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Abstract
i 'I}"/;.’I'\’J/ ’

A first-order determination of the effgcts of boundary flow of high-speed
aircraft on the transmission of 0.2) to 20u) radiation is presented. The four
types of boundary flow considered are: main flow, shock wave, turbulent boundary
layer (TBL), and separated flow. The potential-flow velocity field provides a
means for computing wavefront aberation caused by curved demsity contours in the
main-flow region. An example problem is worked out for a collimated beam emerging
from a sphere. The density jump across a shock wave generally causes both beam
refraction and beam degradation. The special case of refraction by a plane shock
wave is computed. Estimates of the average modulation transfer function (MTF) for
the TBL and separated flow are made from experimental data. From the wavefront
aberation of main flow and the average MIF's for the TBL and separated flow, the
effect of boundary flow on both propagating and imaging systems 1s analyzed. The
effect is presented in terms of power density at the focus point for propagating
systems and in terms of resolution for imaging systems. -The effect of shock waves
is not considered in the analysis because the onlyfnuﬁltitativa work in that area
concerns beam direction only, not beam quality. I general boundary flow has only
a slight effect on long wavelength (IO.Qﬁ) radiation. The only exception is the
effect of main flow at low altitude in which case power density at focus may drop
to less than one percent of the diffraction limit. A similar power loss may be
caused by both main flow and separated flow when the wavelength is short (O.SSJ).
Only the TBL effect is not drastic., Finally, the scaling rules for predicting
boundary-flow optical effects of a gde from a similar body of different scale is
derived. Adjustment of wavelength and/or density is required to compensate for the

change in scale.
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I. Introduction

The quality of an optical beam which passes through the boundary flow of a
transonic or supersonic aircraft can be drastically reduced. Camera resolution
dropped from 164 lines/mm to 30 lines/mm in a wind tunnel test of the RF-4C
aircraft.l When a lower acuity system was flight tested in the RF-4C, resolution
dropped from 35 lines/mm to 20 lines/mm.2 The reason for the resolution loss was
that the optical path from the target passed through a separated flow region
behind the nose chin as shown in Figure 1., Density fluctuations in this region
caused random wavefront errors, and resolution was thus reduced. When the
aircraft nose was refaired, the resolution loses did not occur.3>4 Random
density fluctuations are not the only source of aerodynamically induced optical
degradation. It will be shown that the curved air density contours in the main
flow region of a blunt body, as shown in Figure 2, produce wavefront aberrations
which, if uncorrected, may completely destroy the optical quality of an incoming
or propagated beam,

These examples show that an understanding of boundary flow effects is
necessary if airborme optical systems are to achieve optimal results.

Purpose of this Report

The purpose of this report is to present a first-order determination of the
effects of boundary flow on the transmission of 0.2u to 20u radiation. This
ar~roach establishes the significance of the aerodynamic effect and hopefully will
lead to more rigorous analytical and experimental studies.

Types of Boundary Flow

Boundary flow may be divided into two classes, random and controlled. In
addition to separated flow, random flow includes the turbulent boundary layer (TBL),
which forms on the skin of all aircraft. The TBL causes a degradation similar to,
but weaker than that caused by separated flow. Stine and Winovich have shown that
TBL's as thin as one inch may cause significant degradation.3 Unlike the random
flow, controlled flow has density gradients which are constant in time. Also
wavefront deviations caused by controlled flow generally have a larger spatial
scale than those caused by random flow as shown in Figure 3. Both main flow and
shock waves are types of controlled flow. The shock wave occurs whenever some part
of the flow field outside an aircraft has a speed greater than the speed of sound
relative to the aircraft. The shock wave is a very thin pressure jump and there-
fore a very thin density jump. In the simplest kind of wavefront deviation, the
shock wave is a plane interface between media of different refractive indices, and
a beam passing through the shock will behave according to Snell's law as shown in
Figure 4. All four types of boundary flow (separated flow, TBL, main flow, and
shock wave) are shown in Figure 5 for an RF-4C at Mach .93.
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FIGURE 4
OPTICAL EFFECT OF A PLANE SHOCK WAVE

s :
¢
§

GP74-0200-4

( ACDONIELL ANVCORAFT COMPANY
! s
| o e OIS ST B L D fnecmmmanil - e it il e




REPORT MDC A2582
14 DECEMBER 1973

Turbulent
Boundary

“"“\

Turbulent Separated
Boundary Flow
Layer
Shock
Wave
Main Flow \
Main Flow

GP74-0200-8

FIGURE 5
POSITIONS OF MAIN FLOW, SHOCK WAVE, TURBULENT BOUNDARY LAYER, AND
SEPARATED FLOW FOR AN RF-4C AT MACH 0.93

e T WSS

L L




REPORT MDC A2582
14 DECEMBER 1973

Summary

This report considers the optical effects of the four types of boundary flow:
main flow, shock wave, TBL, and separated flow. The next section presents the
basic aerodynamics and optics theory used in the rest of the report.

Controlled wavefront deviations are discussed in Section III. Wavefront
aberration cuased by curved density contours in the main-flow region are computed
from the potential-flow velocity field. An example problem is worked out for a
collimated beam emerging from a sphere. This section also includes a qualitative
description of degradation caused by shock waves. The special case of refraction
by a plane shock wave is computed.

In Section IV the Stine-Winovich experiment data and the RF-4C wind tunnel
data are used to estimate average modulation transfer functions (MIF's) for TBL's
and separated flow respectively. A recent experiment by Kelsall is also described.
Althoug’ ‘uveral complications make it impossible to properly analyze the resultant
data, this experiment is important because the average boundary flow MIF was
measured directly using a shearing interferometer. Hopefully this new technique,

b which produces more reliable MIF measurements than any other method, will be used
in controlled experiments to measure boundary flow MTF's,

From the results of the previous sections, Section V analyzes the optical
effect of boundary flow on both propagating and imaging systems. The effect is
' presented in terms of power density at the focus point for propagating systems and
in terms of resolution for imaging systems. In addition to main flow, turbulent
boundary layers, and separated flow, wake flow is also considered. Wake flow is
- gimply separated flow which occurs behind a blunt body as shown in Figure 6. 1In
Section V wake flow is treated as a special case of separated flow. Shock waves
are not considered because the only quantitative work done in that area concerns
beam direction only, not beam quality. Finally, Section V derives the scaling rules
for predicting boundary-flow optical effects of a body from a similar body of
different scale.

Notation, Symbols, and Important Equations

Appendix A contains a summary of important equations as well as a list of
notations and symbols.
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II. Basic Theory

The purpose of this section is to present the basic aerodynamic and optics
theory used in the rest of the report. The topics discussed here are the
relationship between refractive index and density for air, the optical phase, the

optical transfer function (OTF), power density in the focal plane, and the aero-
dynamic similarity rules.

Relationship Between Refractive Index and Density for Air

Because the refractive index n of air is very close to unity, it is conven-
ient to define the refractive modulus

N = (a-1) x 10°. (2-1)

At normal temperatures and pressures N is of the order of 300. A formula which
gives N to within + 1 for dry air in the 0.2u to 20u wavelength region is

-15
N=0.776 3 1+ 122510, (2-2)

where

P = pressure in nt/m2
T = temperature in °K
A = wavelength in meters.

A correction factor for water vapor, which may subtract as much as 3 from N, is
given by

-3
- 0.6 x 10 " P,
where P is the water vapor pressure in nt/m2. For the accuracy required in this

paper, waever, the correction factor will not be required. Using the perfect gas
law, .

P = 287 pT (2-3)

where p is density in kg/m3, Equation (2-2) may be written

-15
N=223p 1+ 122220 (2-4)
A

The refractive index may now be written
n=1+Kpo (2-5)
where the Gladstone-Dale constant K is given by

5

-1
K=0.223 x 1073 (1 + Mﬁm——) n3/kg. (2-6)
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The wavelength term is negligible for wavelengths longer than 10¥ so that

K= 0.223 x 10> o>

m”/kg (2-7)
for long wavelengths. Even for shorter wavelengths, the wavelength term may -3
have little effect; for example, when A = 0.55u K increases to only 0.228 x 10
m3/kg. For most purposes, therefore, Equations (2-5) and (2-7) may be used to
calculate n. Otherwise Equations (2-5) and (2-6) may be used.

Optical Phase
For our purposes we may represent a general optical wave as a scalar given
by
F(x,y,2,t) = A(X,y,2,t) exp{-i[wt - kA(X,y,z,t)]} (2-8)
where
X,¥,2 = Cartesian coordinates in space

t = time

F = wave function (generally complex)

A = wave amplitude (generally complex)

A = wave phase

w = angular frequency (2mc/})

k = wave number (2m/))

¢ = gpeed of 1light

A = optical wavelength.

The function F gives a complete description of the optical wave in space and time.
In this subsection we will show that for our case the quotient A/) completely
describes the optical wave. The relationship between A and the refractive index n

of the medium is given. Finally, it will be shown that A and the wavefront W are
equal in magnitude and opposite in sign.

First Equation (2-8) is simplified. Since our medium is not lossy and since
the wavefront is essentially plane, not spherical, A is a constant. The term

-iwt
e

in Equation (2-8) is left to be understood. The time dependence of A is also left
to be understood, and Equation (2-8) becomes

F(x,y,z) = aelk8(X:¥52) (2-9)

This equation shows that at a fixed time and amplitude F depends on A/)A only.

Let us examine a beam which traverses a medium of varying refractive index.
A plane parallel, monochromatic beam emerges from the x“y‘~plane of a Cartesian
coordinate system with its direction of propagation parallel to the z“-axis as

shown in Figure 7. At some distance L>>) from the x“y“-plane we examine the
wave.
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F(x,y,L) = AelkA(X:¥:L) (2-10)
The phase is found by integrating the refractive index n over the optical
path.
The phase is given by
(x,y,L)
A(x,y,L) = [ n(x",y",2") ds + m A (2-11)
' (x,%,0)

where ds is an increment along the ray path from (x,y,0) to (x,y,L) and m is any
convenient integer. For the boundary flow problem the refractive index changes
are small, so the ray path will be very close to parallel to the z"-axis. The
variations of the ray from the z“~axis in Figure 7 are greatly exagerated.

ds = dz° (2-12)

and

a(x,y,L) 't n(x,y,z”) dz” + m A. (2~13) .

We now look at the wavefront W(x,y,L) at z° = L as shown in Figure 7. It is

defined by specifying that the phase at the wavefront is equal to some arbitrary
constant.

Alx,y,W(x,y,L)] = const =

W(x,y,L)
‘ﬁ n(x,y,z°) dz” + m A (2-14)

or

W(x,y,L)
const -t n(x,y,z") dz” + m A + { n(x,y,z") dz~ (2-15)

Using Equation (2-13) and the fact that n 1s constant over distances of several
wavelengths, Equation (2-15) becomes

const = A(x,y,L) + n(x,y,L) W(x,y,L) (2-16)

Choosing zero for the value of the arbitrary constant and noting that n is very
close to unity, we have

w(x,y,L) = =A(x,y,L). (2-17)

Equation (2-17) shows that 4 and W have the same magnitude but opposite signs.

MODONMELL AIRCRAFT OOMPANY
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Optical Transfer Function

In the case of turbulent boundary layers and separated flow, 4 is a random
variable which in practice cannot be measured. However, the average OTF, which
is a function of A, can often be measured or computed.

Definition. If in Figure 7 a perfect lens is placed perpendicular to the
z"~axis at z° = L, an image is formed in the focal plane. A screen with an
aperture I is placed adjacent to the lens as shown in Figure 8 so that all light
passing through the aperture must also pass through the lens. The pupil function
G is defined in terms of the wave F at the aperture as follows.

F(x,y) = AeikA(x’y), (x,y)el

G(x,y) = (2-18)
0, (x9Y)¢ z
In words, the pupil function G is identical to the wave function F inside the
aperture but vanishes outside the aperture. The dependence of F and A on L 1is

left to be understood. The wave amplitude U in the focal plane is the inverse Fourier
transform of G, 1

U(X,Y) = _Alf JG(x,y) expEif—k(xx + yY)] dx dy (2-19)

f———

where X and Y are the coordinates in the focal plane and f is the focal length.
The image irradiance I is then given by

I(X,Y) = U*(X,Y) U(X,Y). (2-20)

The asterisk denotes complex conjugate. The optical transfer function T of the

wave passing through the aperture is defined to be the normalized Fourier transform
of I,

r(;—f.{?) -2 J ! I1(X,Y) exp[i—f“-(xx + ng X dy (2-21)
where ;
C= H I(X,Y) dX dY (2-22) :
}

Using Parseval's theorem from Fourier analysis in conjunction with Equations (2-19), .
(2-20), and (2-22) we have R :

C= ﬁ U*(X,Y) U(X,Y) dX dY = !I' G*(x,y) G(x,y) dx dy (2-23)




| ey

——— - —— T O WA e

S g T T

REPORT MDC A2582
14 DECEMBER 1973

X Focal
Plane
n(x’,y".z)
Lens
Aperture
(x',y',0) T — .
— ; z
Wavefront \}_ —_———
L n=1
GP74-0200-8
FIGURE 8

GEOMETRY FOR DEFINING OPTICAL TRANSFER FUNCTION

PR

R e

Rttt R Y LT T

—_—




REPORT MDC A2582
14 DECEMBER 1973

or using Equation (2-18), we have
| C = A*AL. (2-24)

Equations (2-22) through (2-24) each imply that C is the radiant power which passes
throughthe aperture and lens to the focal plane.

The spatial frequencies defined by

- X - X -
Ve = 3f and vy it (2-25)

allow Equation (2-21) to be written

'r(vx.vy) = %_J I(X,Y) exp[i21r(va + Y\:y)]dx dy. (2-26)

The quantities Vo and vy have units of cycles per unit distance. Since t is the
Fourier transforim of a real function, it is Hermition; the real part of Tt is an .
even function, and the imaginary part is odd. If I is even, t is real. The

MIF can now be defined simply as the absolute value of the OTF.

( Autocorrelation Function of Pupil Function. Although the OTF is defined by
Equation (2-21), it is often convenient to express T as a function of the pupil
function rather than the focal plane intensity. Specifically, it can be shown

- that the OTF is equal to the normalized autocorrelgtion function of the pupil
function by using a theorem from Fourier analysis,

-]
1 PR - . P
\'({-‘f-,-)%) - ﬂ' GR(x",y") G(x +x,y +y) dx dy: (2-27)
The OTF may be expressed in terms of A by using Equations (2-18) and (2-24),

'r(-;‘%.-)‘zf) = % fco(x‘.y’) Go(x‘+x.Y’+y)

x exp{ik[A(x"+x,y +y) = 8(x ",y )]} dx"dy~ (2-28)
where \
( 1, (x,y) eI »
GO(X.Y) = (2-29) ,
0, (X.Y) t 2 :i

Diffraction OTF. A special case occurs when the wave front entering the aper-
ture ig plane, in which case 4 is constant. Equation (2-28) becomes the diffraction-
limit OTF (or MIF, since the OTF is real) of the aperture.

C i
H
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X 1 (e o i ) ny
To(’x?"xzf) "1 _! Gp(x",y") Go(x“+x,y +y) dx’dy (2-30)

Two aperture shapes which are often used are the rectangle and the circle. For
a retangular aperture with dimensions Dx X D the pupil function is

Yy
1,0<x<D, 0<y<Dy
Go(x,y) = (2-31)
0 otherwise

and the diffraction OTF is

(1-%1)(-%}%]-);-13,‘5::50,-1) <y <D

X ¥\
TO(Af’Af) (2-32)
0 otherwise
For a circular aperture of diameter D the pupil function is

1, 0 £ r<D/2

Go(r) = (2-34)
0 otherwise

where
r="x2+y2, (2-34)
The diffraction OTF is
2leos L (E)-(E (£}
e (5HE) - 0 <o e
T
To(xf) (2-35)

C otherwise
Figure 9 is a plot of the diffraction OTF's for rectangular and circular apertures.
Notice that only positive spatial frequencies are used since all diffraction OTF's

are even functions.

Examination of Equation (2-28) reveals that any aberation in the wavefront
at the aperture can only serve to decrease the MIF below the diffraction value.

That is
x X x X
IT(Af’J\f)' < |TO(A£’A£)

A comparison of T with o is often used as a measure of the seriousness of the
aberation.
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Sine-Wave Response Function. For an imaging system the MIF is the sine-wave
response function of the system. Consider the imaging system geometry showm in
Figure 10. An incremental area dX°dY~” located at (X“,Y”) in the object plane
produces an image on the image plane. We assume that light from the object plane
is incoherent, and for simplicity we assume that the magnification is unity. The
radiant power reaching the image plane from our incremental area is proportional
to 0(X",Y") dX“dY” where 0(X",Y”) is the object radiance at (X*,Y”). We now wish
to find the resulting image irradiance at (X,Y). In defining the OTF, I(X,Y) was
the image irradiance resulting from a wave which, except for boundary flow effects,
was plane at the lens aperture. We may also take I(X,Y) as the image irradiance
resulting from a point object far to the left of the lens. In this sense we

now define the point spread function p(X,Y) as the normalized image irradiance
corresponding to a point object. The OTF is now taken as the Fourier transform
of p(X,Y). In the present context I(X,Y) results, not from a point, but from a
finite object. It is this image irradiance which we are trying to find. Since
the incremental area may be considered a point, the incremental contribution to
I(X,Y) is

dIi(X,Y) = 0(X",Y") dX°dY” p(X-X~,Y-Y"). (2-37)

We assume that p(X,Y) is constant for object points throughout the object plane.
I(X,Y) is found by integrating Equation (2-37) over the object plane.

I(X,Y) = ﬂ 0(X*,Y") p(X-X",Y-Y") dX’dY” (2-38)

The integral is called the convolution of O and p. By applying the convolution
theorem from Fourier analysis to Equation (2-38)4we have

Si(vx,vy> = So(vx,vy) T(ux,vy) (2-39)

where S,, S o’ and 1 are the Fourier transforms of I, 0, and p respectively.
Equation (2—39) shows that the OTF is the spatial frequency response of the
system.

We now let the object be a sinusoid of frequency v,

0(X",Y") = Co sin(2mX™+ ¢) + 1, 0 < Cj < 1 (2-40

where ¢ is a phase factor and Cp is a constant which we call the object modulation.
Taking the Fourier transform we have

S°<vx, ) - ¢, 6(vx - v) + G(vx) (2-41)

AMCDOMMELL ANCRAFT CORMPANY
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where § 1s the delta function. Substituting Equation (2-41) into Equation (2~39),
we have

|si(vx,0)] =- lr(vx,O)ICO § (v =v) +|r(vx,0)|6(vx)
(2-42)
=~ lT(v,O)lCOG(vx-v) + G(vx).

This equation shows that the image of a sinusoid of frequency v is also a sinusoid
of frequency v, the modulation of which is reduced by a factor of It(v,O)I. In
other words, the MIF is the sine-wave response function of an imaging system as
illustrated in Figure 11.

Power Density in Focal Plane

Suppose a beam of light emerging from and aircraft is focussed at some distant
point as shown in Figure 12. Diffraction and the boundary flow will cause the
point image to be spread over the focal plane. In this type of problem the image
irradiance or power density I(X,Y) is sought. The problem geometry here is
somewhat different than that used earlier. Here the optical distrubance caused
by boundary flow occurs between the lens and the focus point.

The mathematics developed for tne geometry in which the lens is between the
disturbance and the focus point is still valid, however, as long as the distance
between the lens and the disturbance is much less than the focal length.

One way to attack this problem would be to use Equations (2-19) and (2-20).
Unfortunately the pupil function G is often unknown. Since the average OTF may

be known, however, we look for a way to compute I from t. This is easily found
since Equation (2~21) shows that I and T are Fourier transform pairs.

c ¢ [ x _ 1k _
I(X,Y) = 0f)2 I! r(ﬁ,-&)exp[ t (xX + yY)] dx dy (2-43)

In polar coordinates with rotational symmetry we have

D
2
IR) = -2%;% r(f—f) Jo(—’;%&) r dr, (2-44)
0
where
R = VX2 + Y2, (2-45)

MODONNELL ANCRAFT COMPANY
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D is the aperture diameter, and J, is the zero order Bessel function of the first
kind. Since integration is a lingar process, T and I may be replaced by their
averages in Equations (2-43) and (2-44).

Often the average power density at the beam center is of particular interest.
From Equations (2-43) and (2-44) we have

100,0) = —— r(ﬁ-,-{%) dx dy (2-46)
(A f)
and
D
2nC b
I(0) = —= t(——)r dr. (2-47)

In Section V we use the ratio of I(0,0) to the central power density achieved
in the diffraction limit, IO(O,O). By substituting Equation (2-30) into Equation
(2-46), we find that

1,(0,0) = =— . (2-48)
(Af)
The ratio is then
a0
100,00 1 X ¥ -
5,0 " I ﬂ \afag Jox (2-48)
or
1(0) 8 ¢
r
« — \ 1f—=|rdr.
2-50)
IO(O) D2 § (Xf) (
In this report the ratio above is called the normalized central power dersity
(NCPD).
The NCPD can also be expressed in terms of the optical phase 4 by using
Equations (2~18), (2-19), (2-20), (2-24) and (2-48).
1, €¢ 1kA (x,y)
neep = 5| (§ e,y e P ax day|? (2-51)
2:2 0

If we have polar coordinates with rotational symmetry, Equation (2-51) becomes

D/2
NCPD = 9%[ { IR 42, (2-52)
D" o
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Aerodynamic Similarity Rule

The aerodynamic similarity rule, which is taken from fluid flow theory,*
states that two similar models of different scale will produce similar flow if
certain conditions are met.9 This rule is used in developing optical scaling rules
in Section V.

In general, the fluids for the two models are different, and there are six
conditions that must be met. Before these conditions are presented it is necessary
to introduce some notation. Let us define the following terms for any model.

X characteristic linear dimension (for instance, the distance between two
given points on the model)

t characteristic time (for example, the time it takes for a fluid molecule
to travel along the model surface from one given point to another)

v fluid speed

cp fluid specific heat at constant pressure

Cy fluid specific heat at constant volume

a speed of sound in the fluid

g gravitational acceleration

) fluid density

H fluid coefficient of viscoisty

K fluid coefficient of thermal conductivity

General Conditions. Two similar models of different scale will produce similar
flows if the following conditions are met.

1. Corresponding values of the time scale (X/tV) are equal
2. Corresponding values of the ratio of specific heats (Y-cp/cv) are equal
3. Corresponding values of the mach number (M=V/a) are equal

4. When gravitational body forces on the fluid are important, corresponding
values of the Froede number (gX/V2) are equal.

5. Cbrresponding values of the Reynolds number (R, = pVX/u) are equal
6. Corresponding values of the Prandtl number (ucp/x) are equal.

Although there are six conditions which generally must be mét. only three are
important with respect to high speed aircraft,

Pertinent Conditions. Because the change in gravitational acceleration is
negligible over the entire region near the aircraft, gravitational body forces on
the fluid are not important and Condition 4 can be neglected. Condition 2 can be
neglected because the fluid under consideration is always air which has a constant

* We refer here to the differential equations of motion of a viscous, compressible,

heat conducting fluid. Because some of these equations are nonlinear partial dif-

ferential equations, a general solution has never been found. The interested
reader 1is referred to a text on fluid mechanics such as References 9 and 10.
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Y of 1.4, Finally Condi;ion 6 may be neglected because a constant Y implies a
constant Prandtl number.”’ The remaining Conditions 1, 3, and 5 which are pertinent
to high speed aircraft state that corresponding values of

Time scale (X/tV)
Mach Number (V/a)
Reynolds number (pVX/u)

are equal for the two models. The values of a and u, which are functions of
temperature only, are given by

a .VJDE = V287 YT m/sec (2-53)
and
-6/ T 3/4
u=17.89 x 10 (Eggrig) kg/m-sec (2-54)

where T is temperature in °K. Consider now two models, 1 and 2. To meet Conditions
1, 3, and 5 we require

X /e, = X2/t2V2 (2-55).

v,/a; = V2/a2 (2-56)

o™

Dllel/u1 = 02V2X2/u2 (2-57)

If the temperatures for the two models are equal, then a; = aj, Hy = Uy and
Equations (2-55), (2-56), and (2-57) imply

V2 = Vl or Ml =M, (2-58)
X
t2 - tl x— (2-59)
1
and
X

This means that if we wish a one-fifth scale model (Model 2) to produce a flow
similar to that of a full size airplane (Model 1), then the speed must be kept the
same, and the density must be increased by a factor of five. The characteristic
time of the flow will decrease by a factor of five.
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I1I. Controlled Effects

This section presents a discussion of the controlled wavefront deviations
caugsed by the main-flow region and by shock waves.

Main Flow

This subsection presents a general method for predicting the optical phase
disturbance A(x,y) caused by density variation in the main-flow region of a sub-
sonic body. This method is then applied to the main-flow field about a sphere.

General Method. Figure 13(a) demonstrates the problem. A beam emerges
from an aircraft, traverses the main-flow region, and is focused at a point
very far away. The wavefront emerging from the aperture is assumed to be plane
parallel. We wish to predict the wave phase A(x,y) at a distance L from the
aircraft such that density beyond L is essentially equal to freestream density.
The solution to this problem is also the solution to the problem represented by
Figure 13(b). We are given a plane parallel wavefront at L moving toward the
aircraft, and we wish to know A(x,y) at the aircraft.

We begin by stipulating that
4(0,0) = 0 (3-1)

where the origin is taken as the center of the outgoing wavefront. The phase may
then be expressed as

L
A(x,y) = S [n(x,y,2z) - n(0,0,z)] dz (3-2)
0

where n is refractive index. Substituting Equation (2-5) into Equation (3-2), we
have

L
8xy) = K § [o(xy.2) - 0(0,0,2)] ¢z (3-3)
0

where p is density and K is a constant given by Equation (2-6) or approximately by
Equation (2-7). 1In order to solve Equation (3-3) it is necessary to find the
density field sbout the aircraft (neglecting the boundary-layer and separated-flow
regions). This can be done by first finding the velocity field for an incompres-
gible fluid using potential flow theory and then applying the Karman-Tsien hodograph
method as presented by Liepman and Puckett.ll
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In working this type of problem it is helpful to use the reference system
shown in Figure 1l4. The aircraft is stationary as is a very large fictitious
reservoir of compressed air. A large hole in the reservoir allows air to escape
and pass by the aircraft at a free stream speed U. We let a, and a_ represent the
speed of sound in thu reservoir and in the freestream respectively, and we let
Po and P, represent the air density in the reservoir and in the freestream
respectively. The quantities U, a_, and p, are given.

Using the shape of the aircraft and the given value of U, the velocity square
field V2(x,y,z) for an incompressible fluid is found from potential flow theory.
General methods for calculating V2 are not considered here, except for the following
comment. The field VZ can be easily found for some simple shapes such as for a
sphere. For more complicated shapes, solutions can be found by superimposing the
velocity potentials of simple shapes. 10

Once Vz(x,y,z) is found, the density field p(x,y,z) can be found by the
following approximation from the Karman-Tsien hodograph method, 11

bay = VA (x,,2)

p(x,¥,2) = pg —3 (3-4)
430 + Vz(x,y,z)
This equation may be rewritten in terms of p, and a, instead of %) and a; by
applying the equalitiesl1
al = _Yzl v? + 82 (3-5)
and
2\ L
-1 U -1
o = Pu (1"'15'—2") ! (3-6)

where y is the ratio of specific heats. For air y = 1.4, Using Equations (3-4),
(3~5), and (3-6), Equation (3-3) may be expressed as

L
- l-wi(x,y,z) _1-w'(0,0,2) _
A(x,y) = H (S) ITwxy) 17w (0.0.2) % (3-7)

where
X1 2
H =Ko, [1+5 M), (3-8)
M_ = U/a_ = freestream Mach number, (3-9)
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and 1

2 2
w(x,y,2) = V' (x,5,2)/a, . (3-10)

2(-1M2 + 4
Equations (3-7) through (3-10) provide a method for estimating A(x,y) provided
v2(x,7,2) < a (3-11)

for all space. The speed a_ is given bylo

YP,
- — -12
a_ 5 4287yT°° (3-12)

o

where T is the freestream temperature in °K and a_ is in meters/sec.

Main Flow for Sphere. To find A(x,y) for a sphere the coordinate system shown
in Figure 15 is used. The polar axis points into the flow, and the center of the
beam defines the z-axis. The angle between the polar axis and the z-axis is 6.
The y-axis lies perpendicular to the z-axis in the plane defined by the polar and :
z axes. The x—-axis is perpendicular to both the y and z axes. The beam emerging
from the gsphere is taken to be plane parallel, lying paralled to the x,y-plane,
.at z=R where R is the sphere radius. To simplify the problem the following
normalized variables are introduced.

t=%x/R n=y/R E&=2z/R (3-13) 1

Gelen?eg? e (3-14)

The derivation in Appendix B shows that wave phase is given by

L - q(8,¥) ¢, - q(8,,E)
. & T A 1 0’ (3-15)
A(x,y) = A7(g,m) = Ko_Re, { e, F a0 5 F al6y,n) o

where
2 2
e, = [20v=-D1)M, + 4]/ (3-16)
1
c, = (L+ rz_l u2) v-1 (3-17)
2 3 2., ,.6 :
q(8,¥) = 1 + (1- 3 cos“8)/¥” + 1/4(1 + 3 cos“8) /v (3-18) §
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and

cos 8 = (Ecos 6, — n sin 60)/w. (3-19)

0

Equation (3-15) 1is not valid if at any point in space V2 = Uzq > a,. Since the

maximum value of q is 9/4 as shown in Appendix B, we must have

2 4 2 -
M, <gor Mo< 3 (3-20)
If M_ exceeds this limit, V will reach the speed of sound, and a shock wave will
form.

Figure 16 shows plots of A°(0,n)/pR at Mach 0.6 for several values of 8p-
The plots were obtained by evaluating Equation (3-15) numerically. The upper
limit used was 2 = 50, which effectively is the same as % = =,

These calculations of A are based on a compressible but nonviscous fluid.
A real fluid such as air would produce a flow separation aft of the sphere at
very low Mach numbers, and calculated values of A for paths traversing the flow
separation are not valid. However, the calculations do provide good estimates for
forward-looking paths. In fact the estimate is reasonable for forward-looking
paths even if M > 2/3 since the shock wave will occur at polar angles of about 90°.

Although A gives a complete description of the optical degradation, the main-
flow OTF may also be required. The OTF can be obtained simply by applying
Equation (2-27) to A. The term I in Equation (2-27) refers to the beam cross
section. Aircraft are streamlined, and therefore do not have as severe a main-
flow optical effect as the sphere. The fact that the sphere does produce a large
offect, however, indicates that the main-flow effect should always be considered
as a possible source of optical degradation.

Shock Waves

In this subsection a very brief qualitative description of the optical effect
of shock waves is presented, and the refraction caused by a plane oblique shock
wave is computed.

Qualitative Description. Shock waves are very thin pressure gradients in
aircraft boundary flow. They occur only when some part of the flow field has a
speed relative to the aircraft greater than the speed of sound. The shock wave
thickness is only a small fraction of a centimeter,12 gso that for our purposes the
shock wave may be considered a line separating two regions of different pressures,
velocities, and densities. Since refractive index is a linear function of density,
the shock wave 18 also the interface between regions of different refractive
indices. Light passing through a shock wave will be refracted according to Snell's
law. This effect is generally unimportant in aerial photography, since the image
is not degraded but only displaced slightly. An unusual exception is the case of
the Refaired Nose RF-4C flying at high subsonic Mach numbers. As air moves past
the nose it is accelerated to a speed greater than the speed of sound. Under
r2rtain conditions a shock wave forms at the camera window as shown in Figure 17.
When this happens a fuzzy band app:ars on the image format as shown in the figure.
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Light from the ground area corresponding to the fuzzy band arrives at the camera
with an angle such that part of the light does not cross the shock wave but the
rest does cross and is therefore refracted. The result is a double image which is
the fuzzy band.

The description of the shock wave as the interface between media of different
refractive indices is somewhat oversimplified. In general shock waves are curved,
and the refractive index on either side varies continuously along the shock wave.
This complication causes the shock wave to not only refract light passing through
it, but alsoc to distort the optical wavefront. No attempt is made here to analyze
such a distortion. The angular deviation caused by refraction for a plane wave is
analyzed, however, in the next subsectionm.

Refraction by a Plane Shock Wave. Although refraction is usually not a
problem in aerial photography, it is important in optical systems for which the
target must be accurately located. Here we derive the angular refraction caused
by the plane shock wave which is produced by the geometry shown in Figure 18.

Alr travels at some supersonic speed u] parallel to the horizontal surface. When
the air reaches the ramp inclined at an angie 6, the air is turned parallel to the
ramp and a shock wave is formed. We define the angle of the shock wave to be 8
and the horizontal and vertical compoments of the deflected stream of air to be

uy and v respectively. The air densities to the left and to the right of the
shock wave are Pl and p, respectively. The temperature and speed of sound to the
left are To and ae respectively. '

We will show how pj can be found from a knowledge of uy, p)» Tw, and either
6 or 8. Once p; and py are known it is a simple matter to find their corresponding
refractive indices nj; and ny. Snell's law then gives the angle of refraction for
light crossing the shock wave.

Before going into the derivation it is necessary to define the critical speed
of sound a.. Going back to the reference system of Figure 13, a, is defined as the
freestream speed U when U is equal to the freestream speed of sound a,. In other
words, when the freestream Mach number is unity (M, = U/a, = 1), then we have a_. =
U= a,, The speed a, may be expressed in terms of U and M, byll

2 Y- 1+ Z/M“

2 u ——— -
al =10 ) . (3-21)

Notice that when M, = 1, Equation (3~21) reduces to a. = U as expected,
Going back to Figure 18, we see that simple geometry provides the relationship
v

tan § = 2 . (3-22)
Y2
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By using the laws of conservation of mass, momentum, and energy, it can be shown
that up and v, must also satisfy the following equation.ll

2 2
(uy = u)” ( - a)
e e

7
A

Equations (3-22) and (3-23) may be rewritten as

v
tan 6 = —% (3-24)
u,
2
and
(v = u? (ufus - D)
(vp2 = &2 12 (3-25)
2 » - -
) Ty vl
where
u u v
. - 2 . 2 )
U, = ——y u_ = ==, V==, (3-26)
c 2 a, 2 ac

Figure 19 plots v versus u? for both Equations (3-24) and (3-25). The values

of 6 and u7 for this figure are respectively 15° and 2. The two curves intersect
at three points C, D, and E. Values of uj and v3 corresponding to these points
satisfy both equations. The value of u, at point A on the uy~axis is equal to uy.
Therefore values of (u,, Vv,) to the right of point A require that the flow increase
speed as it passes through“the shock wave. Such an increagse can be shown to be

physically impossible since entropy would be required to decrease.ll We may therefore

eliminate the values of uj and v3 at point E from our set of solutions. The
remaining two points, C and D, represent the possible velocity components for the
flow to the right of the shock wave. Point C is said to represent the solution
for a weak shock wave and D a strong shock wave, since the velocity change through
the two shock waves are respectively small and large. Generally the shock wave
produced experimentally will be the weak shock wave.ll

Figure 19 can be used to find not only uj and vj but also the shock wave
angle B. Again by using the conservation laws, it can be shown thatll

uqg = u
tan 8 = ——2 (3-27)

or

tan 8 = 1v‘ . (3-28)
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GRAPHICAL SOLUTION OF NORMALIZED VELOCITY COMPONENTS
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To find the angle 8 of the weak shock wave, a vertical line is drawn through

point C as shown in Figure 20. This line intersects the uj-axis at point F.

Since the lengths of the line segments FA and CF are uj - uj and v) respectively,
the angle FCA is equal to B. Going a little further, a perpendicular to the

line defined by A and C can be drawn through the origin O. The angle between this
perpendicular and the ui-axis is also equal to 8. Figure 20 is now a comstruction
of the actual ramp and the weak shock wave. A similar construction for the strong
shock wave would show that the strong shock wave has a larger shock wave angle.

In the limit as the ramp angle 6 approaches zero, the strong shock wave angle
approaches 90°. On the other hand, the weak shock wave angle approaches a value
given by .

gin 8 = ﬁL (3-29)

where M, = U/ay = uj/a,. Equation (3-29) can be derived by combining Equations
(3-21), (3-23) and (3-27) and taking the limit u>*uj. The value of a, can be
found by using Equation (3~12).

Figure 21 shows that as the ramp angle 6 increases, points C and D approach
each other until they coincide at the maximum ramp angle 8,,.. If the flow
deflection produced by an obstacle is greater than 8paxs @ Plane shock wave cannot
be formed; there is no real solution to the set of equations, (3-24) and (3-25).
Instead a curved detached bow wave is formed as shown in Figure 22,

After the values of uj,, vé. and B8 have been obtained, the density change ]
across the shock wave can Ee found by using the equation for mass conservation,ll

P14y sin B = pz(u2 sin B - v, cos B) (3-30)
or
ui sin B
Dz = pl ui ein B = vi cos B ° (3-31)

We see now that the density p2 can be obtained by finding uj, v, and 8
using Equations (3-24) and (3-25) and then by applying Equation (3-31). If the
angle B 1s known a priori, however, pj can be found without solving for uj and v3
first. As shown in Appendix C, the density p, may also be expressed as

(Y+1)M3 sin2 ]

Pn =P . (3-32)
21 (-1M? s10? 8 + 2
The density change is
22 sin? 5 - 2 -
bp = py=p, "¢ ’ (3-33) )

1 (y-l)M: sin2 B + 2
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UPPER LIMIT OF RAMP ANGLE 6py5 x FOR A PLANE SHOCK WAVE
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and the refractive index change is
An = n, - mn = a+ Kpl) - (14 sz) = KAp (3-34)
or
M2 s1n? -1

(3-35)

An = 2Kp
1 (-2 s1n? 8 + 2

where K is given by Equation (2-6) or approximately by K = 0.223 x 10.3 m3/kg.
We now wish to find the refraction angle A¢ for a beam intersecting the shock
wave. We let ¢ be the angle between the beam and the normal to the shock wave
as shown in Figure 23. Snell's law, n sin ¢ = const., is differentiated,

dn sin ¢ + n cos ¢ d¢ = O (3-36)
or

d¢ = - tan ¢ dn. (3-37)
Since An is very small, Equation (3-37) may be written as a difference equation,

A¢ = - tan ¢ An. (3-38)

Finally, Equation (3-35) is substituted in Equation (3-38).

Mz sin2 B~-1

Ap = - 2Kp1 tan ¢ (3-39)

(v-1)M2 s1n? g + 2

The minus sign indicates that when the beam crosses the shock wave from Region I
(lower density) to Region II (higher density), the beam is refracted toward the
shock wave normal as shown in Figure 23. Figure 24 shows A¢/pl tan ¢ plotted as

a function of B for various Mach numbers. The dotted line divides the plot into
strong and weak shock waves. Figure 25 shows A¢/p, tan ¢ plotted as a function of
M, for both the strong normal shock wave (6 = 0°, % = 90°) and for the shock wave
at 9 = Opax+ Since strong attached shock waves generally do not occur in practice,
the curve for € = Oy.4 represents the maximum angular deviation that is likely to
occur. The curve for 6 = 0° and 8 = 90° represents the maximum angular deviation
that can occur under any circumstance.
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IV. Random Effects

The purpose of this section 1s to present imperical methods for estimating the
optical effects of turbulent boundary layers and separated flow. First analytic
equations for the average OTF and the variance of the wavefront phase 02 are pre-
sented. After a general description of the turbulent boundary layer, the Stine-
Winovich experiment is described. The results of the experiment are used to
evaluate 0 and the average OTF for a TBL. Separated flow is presented in a
similar way. After a general description of separated flow, data from the RF-4C
wind tunnel test is used to evaluate 0° and the average OTF. Finally, Kelsall's
experiment with a shearing interferometer is described. This experiment is impor-
tant because the shearing interferometer technique is capable of measuring MIF's
directly.

Equationsg for Average OTF and gz

The purpose of this subsection is to present analytic equations for the
average OTF and for 02,

Equation for Average OTF. Because the aperture wave phase A is an unknown
random variable, the OTF is also an unknown random variable. It is possible, how-~
ever, to derive a model for the average OTF based on the stochastic properties of
A, The gsrivation of the model is given by 0'Nei118 and, in more complete form, by
Barakat, Since both of these derivations make use of rather advanced theorems
from probability theory, a third simplified derivation is given in Appendix D. All
of these derivations assume that A defines a spatially stationary Gaussian random }
process.

As stated by Barakat:

"This is purely a working hypothesis backed in part by a central limit
theorem argument. The spatial stationarity condition ... is mainly one
of convenience and can be relaxed at the cost of more encumbering
mathematics."

The derivations show that the expected value of the OTF is

E [r(;‘—f%)] -1 (T’;,;%) exp {-k2[02—¢(x,y) ) } (4-1)

where ¢(x,y) and 02 are respectively the covariance function and variance of A.
The function To is the OTF which would result if there were controlled aberrations
only. If there are no controlled aberrations, tc becomes the diffraction OTF, and
Equation (4-1) becomes

E [T ('xlf"-x%)] = TO(X—:;'-A!E ) exp {-k2[°2-°(x))')] } . (4-2)

Throughout this section, only random aberrations are considered, and Equation (4-2)
is used instead of Equation (4-1).
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If we define the ratio of 1 to 7y (or T as the OTF of the random fluctuations
only, then the expected value of the random OTF, TRy is

E [TR< 'i!f-’-ixf') ] - exp{ -k2[02-¢(x,y)] } (4-3)

By definition we have

¢ = E[a(x7,y")A(x"+x, y+y)] - E[A(x",y7) JE[A(x"+x, y +y)] (4-4)
and
2 . . PR
0 = E [{A(x »¥7) - E[a(x",y") 1} ] (4-5)
Expanding Equation (4-5) yields
2 2, . . ey 2
o” = E[2A%(x",y7)] - {E[a(x",y")]} = ¢(0,0). (4-6)

Because spatial stationarity is assumed, ¢ is a function of x and y only, E(4) is
constant, and 0“ is constant. Without loss of generality we take the expected
value of A to be zero. We now have

¢(x,y) = Efa(x",y )8 (x"+x,y +y)] (4~7)

and

o2 = E[82(x",y")] = ¢(0,0). (4-8)

Since obtaining averages from an ensemble is impractical, time averages are used
under the assumption that time and ensemble averages are equal. Equations (4-2),
(4-3), (4-4), and (4-8) become

x Y\, X X ¥ -
T (xf'xf) To (xf"xyf) TR( xf'xf) (4-9)
TR( l_,;’iyf_) - exp{'kz[az"°(xs)')]} (4-10)
o(x,y) = A(x”,y")A(x"+x,y"+y) (4-11)
and
o2 = 4(0,0) = 22(x",y") (4-12)

where the overbar indicates time average, Since Ty and 1y are both real, ?R and T
are average MIF's as well as average OTF's,

It ig still necessary to find a functional form for ¢. Again we adopt the
attitude of Barakat. (Barakat's R, is equivalent to ¢).

a
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" ..inlieu of any contrary evidence R, is taken to be Gaussian as a
mathematical convenience rather than because it has a physical founda-
tion., I have reason to believe that the actual shape of R (provided
it be a smooth function) is less important than its spatial spread."

The function ¢(x,y) can now be written

2 2
ol iG] e

vwhere a, and are the correlation lengths in the x and y directions respectively.
Throughout the rest of this report, the random wavefront aberrations are assumed to
be 1isotropic, that is,

a = ay = a, (4-14)
Equation (3-12) may now be written

2
0(x,y) = 0(r) = o /D, (4-15)

The average random OTF becomes

- 2
TR ()‘—2-) = exp{ -kzcz [l—e (x/a) ] } (4-16)
or
- 2 .
Tk(v) = exp{ -k262 [l-e (Afv/a) ]} (4-17)
where
r
V=3 (4-18)

We now have a two parameter (62 and a) model for the time average OTF. Notice that
TR never fallg to zero but has a minimum value given by

T =e . (4-19)

Equation (4-16) is plotted in Figure 26 for different values of og/A and a. The 02
parameter determines how low TR will drop, and _the correlation length a is a scale
factor for the spatial frequency v. Usually 02 and a must be found experimentally;
however, the following analytic development does show the dependence of o2 on such
parameters as density and velocity.

AMCDOORNNELL ANCRAFT COMPANY
48

TR e o e, s S8

-y -




REPORT MDC A2582
14 DECEMBER 1973

?R for Different Values of a/\ TR for Different Values of a
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FIGURE 26
: AVERAGE RANDOM OTF, ?R' FOR VARIOUS VALUES OF o/A AND a
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Equation for 02, Both Chernovl4 and Tatarskil5 have derived an equation for
02 in terms of the variance of the refractive index as a special case of a more
general problem. Chernov has also used a simple and direct approach, but has
omitted some of the steps. For this reason, a complete direct darivation is given
in Appendix E. The equation for 2 is found to be

ola/ral 2 (4-20)

where a is wavefront correlation length, L is optical path length through the
medium, and uZ 1s the variance of the refractive index. The definition of u is

p=n-n, (4-21)
so that
W2 = (n-A)? = n2-h2, (4-22)

The assumptions made in the derivation are that u<<l and that u has a Gaussian co-
variance function,

(X%, y ",z u(x"+x,y 4y, z"+2) = u exv[-(x2+y2+zz)/a2] (4-23)

where a<<L. The parameter a in Equation (4-23) is the same as the wavefront corre-
lation length. In fact, it is shown in Appendix E, that Equation (4-15), which
gives the functional form for ¢, is implied by Equation (4-23).

One way of estimating u? is to relate the refractive index fluctuation to
dengity fluctuations and then the density fluctuations to pressure fluctuations,
which can be measured at the airplane skin. The transfer from density to pressure
fluctuation is made by assuming that the pressure changes are adiabatic. We start
by substituting Equation (2-5) into Equation (4-22)

2

Weanl-w2e (1+K)Z-1+Ko (4-24)
wZ a1+ 2K + k%2 - (1 + 2K + K2%2) (4-25)
w2 = K27 - 52) = K2(p -3)2 = K2 (80)2 (4-26)

vwhere p is density and K is a constant given by Equation (2-6) or approximately by
K = 0,223 x 10™3 m3/kg. The term Ap represents density variation from the mean.
The adiabatic law,

Po~Y = const (4-27)
where P is pressure and y is the ratio of specific heats (=1.4), is differentiated
to give

o Ydp - ypp’(”"'”do = 0. (4-28)
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z Since we are working with small changes in pressure and density, we can write this
differential equation as a difference equation. Substituting AP and Ap for dP and
do respectively and rearranging, Equation (4-28) becomes

- £ -
Ap YP AP. (4-29)

Generally pressure fluctuation data are given in terms of the fluctuating pressure
coefficient, which is defined by

C = —= (4-30)

where U is the airplane speed and p, is the freestream density. Combining
Equations (4-20), (4-26), (4-29), and (4-30) we have

2 4 4
2 /K P y” | 2 {
o -Ty—zd. _p_TCP (4-31)

where P, 1s the free-stream pressure. This equation can be simplified by using mach
nunber instead of speed,

1
;
f M, = U/a,. (4-32) l
The speed of sound a, is given by Equation (3-12) '

!

8 = /% - /28771, (4-33)

where T, 18 freestream temperature and all units are MKS.

Substituting Equations (4-32) and (4-33) into Equation (4-31) yields !

o = /T; xzp.zam."cpz. (4-36)

Equation (4-34) predicts the wavefront variance when the fluctuating pressure coef-
ficient Cp is known. It will be shown shortly how this equation can be applied to
the TBL problem.

Turbulent Boundary Layer

The purpose of this subsection is to present a brief description of the turbu-
lent boundary layer and then to apply the Stine-Winovich experimental data to the
average OTF and 02 models (Equations (4-17) and (4-34)).

' dotia A Y

C3 Description, Consider a thin flat plat immersed in a fluid moving parallel to
' the plate surface at speed U as shown in Figure 27, A Cartesian coordinate system
is defined by letting the x-axis lie along the top of the plate in the direction of
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the fluid flow and by letting the y-axis be perpendicular to the plate, intersecting
the x-axis at the leading edge. We let u and v represent the x and y fluid velocity

components respectively. From the definition of the problem the velocity components
have the values

us=7 and ve=20 (4-35)

at large distances from the plate. On the surface of the plate, however, friction
imposes the "no slip" condition on the fluid,

u=vys=0, (4-36)

Most of the necessary velocity change takes place in a very narrow region just out-
side the plate surface. This region is called the boundary layer. In Figure 27 the
thickness of the boundary layer is greatly exaggerated and the boundary layer on the
bottom of the plate is not shown. Near the leading edge of the plate, the velocity
change is smooth with distance away from the plate, and the vertical velocity com-
ponent is negligible. Under these conditions we say that the boundary layer is
laminar. This laminar boundary layer gradually increases in thickness with distance
from the leading edge. At some point behind the leading edge, the boundary layer
may become turbulent. Random variations occur in the velocity components u and v
and in the density p. In addition the rate of thickness increase with distance from
the leading edge is larger than that of the laminar boundary layer.

The transition from laminar to turbulent occurs at a position corresponding to
a Reynolds number in the range

3 x 10° < R <3x 108 (4-37)

where the characteristic length associated with the Reynolds number is the distance
from the leading edge.lo All other parameters associated with the Reynolds number
are taken at freestream. The Reynolds number is given by

P=UX

Rt T (4-38)

where X is distance from the leading edge and u, is the freestream coefficient of
viscosity. Since transonic aircraft have Reynolds numbers on the order of 1 x 10
per meter, the boundary layer will be turbulent almost everywhere.

The effect of friction on the speed of the air is greatest at the interface
between the plate and the air, and this effect decreases rapidly with distance from
the plate. The question arises as to how to define the boundary layer thickness ¢.
The general practice is to define & as that distance from the plate at which the
average horizontal velocity component is equal to 99% of the main-stream speed.
That is,

uly = 8) = 0.99U. (4-39)

AMODONNELL ANIORAFT OCOMPANY
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Although 6 1is called the boundary layer thickness, other types of thicknesses have
been defined. One example is the displacement thickness 6*, which is defined by

§

Fyu
6*-f l-ﬁ dy (4-40)
0

where Ty is the average density inside the boundary layer at the distance y above
the plate. Falknerl® has proposed a model for turbulent boundary layers with
Reynolds numbers between 107 and 1010, According to this model, & and 8* are given
respectively by

_ 0.1285 X
1/7
Ry

(4-41)

and

_ 0.0214 X _

S R 17

1
5 8. (4-42)

Equation (4-41) enables us to estimate the optical path length L through the
TBL by setting it equal to 6.

L=§ (4-43)

Likewise, Equatiop_(4-42) enables us to estimate the correlation length a.
According to Lyon-’ the spatial scale of the fluctuating pressure on the skin of
aircraft is approximately equal to the boundary layer displacement thickness &%,
Since the density variations are assumed to be directly related to the pressure
variations according to Equation (4-29), the fluctuating-density spatial scale and
the fluctuating-refractive-index spatial scale are also approximately equal to &%,
Figure 28, which plots the Gaussian covariance function given by Equation (4-15),
shows that the spatial scale is approximately equal to 3a; that is,

§% = 3a (4-44)
or
- (4-45)
a 18’

Now from Equations (2-54), (4-38), (4-41), (4-43), and (4-45) we can write the fol-
lowing equations for L and a.

L = 0.0147 X6/7T,3/289,-1/7U-1/7 (4=46)
a=1L/18 (4=47)
All units are MKS.
AMPODOAMAIELL ANRORAFT COMPANY
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It must be remembered here that Equation (4-46) applies only to flat plates,
and even so it is only an approximation. Since analyses on other shapes are not
available, however, this equation must serve as an estimate for aircraft when no
other information sbout the TBL thickness is available. On shapes other than a
flat plate the distance X would be the distance along the skin from the leading
edge or point.

Although Equations (4-46) and (4-47) give estimates of L and a, Equation (4-34)
shows that Cp is still needed. Fortunately Cp is known to be fairiy constant for
subsonic aircraft TBL's. The value quoted by Lyon17 and confirmed by F-4 flight
tests is )

Cp = 0.006. (4-48)

Apparently we now have a method of evaluating 02 and a by using Equations (4-34),
(4-46), (4-47), and (4-48). The results of the Stine-Winovich experiment, which
will be described presently, show that this method is essentially correct but that
some changes in the equations are necessary. Readers interested in a more detailed
description of turbulent boundary layers are referred to Reference 10.

Stine-Winovich Experiment.> The purpose of this wind tunnel experiment was to
measure the optical effect of the turbulent boundary layers which formed on the wind
tunnel walls. The experiment was conducted at the Ames Aeronautical Laboratory,
Moffet Field, California in the one-by-three-foot supersonic tunnel No. 1, Figure
29 shows the experimental arrangement. Light from a tungsten-filament source is
collected by a lens and passes through a 0.00025-inch diameter source aperture at }
the focus point. The light is collimated by an f/8.6 Newtonian telescope with a . !
21.45 inch focal length and projected across the wind tunnel through plane windows.

On the other side of the tunnel the light is focused by a second Newtonian tele-
scope, identical to the first. One of several circular collection apertures is
placed at the focus point of the second telescope. The radiant power of the light
passing through the collection aperture is measured with a photometer and the
intensity of the tungsten source is monitored with an electronic photometer. The
TBL thickness was found by using a hot wire anemometer. Measurements were made for
the normal TBL with a thickness of about 1/10 foot and for an artificially thickened
TBL with a thickness of about 2/10 foot. The thickening was accomplished by apply-
ing a roughness coating to the side walls of the tunnel to within 40 inches of the
windows. Figure 30 shows the positions of the anemometer probe and the roughness
coating relative to the window.

The analytic approach taken by Stine and Winovich was, in this writer's
opinion, inadequate, However, there is no reason why their experimental data
should not be used to examine our model for the average OTF of a TBL.

Appendix F shows that the average theoretical ratio 6 of the radiant power 3
emerging from the collection aperture to that emerging from the source aperture is '
given by

27Dry r
£ 5 2J1(u r—a)
= u - u b - .
Q= f TO(Z‘"’!‘ )[TR(ET)] Jl(“) T du (4-49) )
0 b b u-2
"o
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where

D = telescope aperture diameter

f = telescope focal length
ry = radius of source aperture
rp = radius of collection aperture

J; = first order Bessel function of first kind

The appendix shows that TR 18 squared because the light beam must traverse two
boundary layers.

The problem here is to match values of Q computed from Equation (4-49) and our
model for TR with the values of Q measured in the experiment. Values of Q were
measured for various mach numbers and densities for both the natural boundary layer
and the artificially thickened boundary layer. Equation (4-49) was evaluated by
using Equations (2-7), (2-35), (4-17), (4~34), (4-43), (4-47), and (4-48). Although
the Newtonian telescopes had a central obscuration, the diameter of which was one-
tenth the aperture diameter, the diffraction OTF of a circle can be used with negli-
gible error. Figure 31 shows a comparison of the diffraction OTF's for a circular
aperture and for the center-blocked circular aperture.

Figure 32 shows both the measured and computed values of Q vsry for the
highest density and mach number. The computed values are represented by the dashed
line. Obviously the experimental values are much lower than the corresponding com-
puted values. The implication is that the actual Ty is much lower than we would
predict. A good match can be achieved, however, with only minor changes to our
model. Specifically, the coefficient in Equation (3-47) is changed from 1/18
(0.056) to 0.08 and the value of Cp is changed from 0.006 to 0.05.

e

a=0.08 = 0.08L (4-50)

Cp = 0.05 (4-51)
The solid line shows a plot of Q vs. r, which was computed by using Equations (4-50)
and (4-51) instead of Equations (4-47) and (4-48). This plot shows good agreement
between the computed and measured values of Q. Figure 33 shows plots of Q vs. 1y
using the new Equations for various values of mach number, density and boundary
layer thickness.

By substituting Eguations (2-7), (4-43), (4-50), and (4-51) into Equation
(4-34), the variance 04 may now be expressed as

-1262 2, 4

02 = 4.4 x 10 oo Mo " (4=52)

All units are MKS., For a flat plate Equations (4-~32), (4-33), (4-43), and (4-46)
may be substituted into Equation (4-52) to yield

2 -16 12/7T 1/14

o2 = 4.04 x 10716, 12/7p 1/14y 26/7,12/7 (4-53)
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The correlation length from Equation (4-50) becomes

-40,-1/7T,1/28 -1/7X6/7.

a= 7,66 x 10 Mo

(4-54)
Again all units are MKS,

Even though the value of C, had to be changed by an order of magnitude to make
our model work, the equations for TR (Equation (4-17)) and for 02 (Equation (4-34))
are apparently reliable. The original failure of the model should not be judged
too harshly. It must be remembered that we were trying to describe density fluctua-
tions inside the wind tunnel boundary layer from pressure fluctuations on the sur-
face of an aircraft.

_ A valid criticism of the Stine-Winovich experiment is that the measured value
of Q may be affected by vibration. The fact that the experimental data does agree
with the model for changes in mach number, density, and boundary layer thickness
indicates that the effect of vibration may well be negligible. Even if vibration
did effect the experiment, the model can still be used with the understanding that
0.05 is an upper limit on C,. Besides the vibration problem, there is the fact that
the OTF is valid only for monochromatic light. It is this writer's belief, however,
that the model for the turbulent boundary layer OTF presented in this section is the
best one available. An accurate model must await direct MIF measurements under con-
trolled test conditions,

Separated Flow

Treatment of separated flow in this subsection is similar to the treatment
given TBL's in the last subsection. After a general description of separated flow,
data from the RF-4C wind tunnel test is used to evaluate o2 and a for the average
separated flow MIF.

Descrigtion.lo Consider the surface in Figure 34 which has a steady convex
curvature, the surface curving away from the direction of flow. In this situation
the mainstream flow is retarded and the pressure increases in the direction of the
flow. It can be shown that static pressure is essentially constant across the
boundary layer; that is

3P
B—y. =0 (4=-55)

inside the boundary layer. This condition implies that static pressure inside the
boundary layer increases in the direction of flow.

x >0 (4-56)
The fluid element ABCD will have an average pressure P on the AD side and an average
pressure P + (3P/3x) 6x on the BC side. The resultant pressure force, in addition
to friction, will slow the element. The deceleration is greatest near the surface
where the element is remote from the mainstream. The figure shows the change in the
average velocity profiles. The deceleration of the fluid implies that the boundary
layer must thicken to conserve mass. At some point S on the surface the velocity
gradient 3U/3y vanishes. Beyond this point reverse flow may occur as shown in the
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figure. The dotted line extending from S in the downstream direction is drawn such
that the mass flow rate between it and the edge of the boundary layer is equal to
the boundary layer mass flow rate upstream of S. The boundary layer actually sepa-

rates from the surface with the region below the dotted line being the separated-
flow region.

RF-4C Wind Tunnel Test. The purpose of this test was to measure the effect of
the separated flow field behind the RF-4C nose chin on photographic resolution. The
test was conducted in the transonic Propulsion Wind Tunnel 16T at the Arnold Engi-
neering Development Center, Arnold Air Force Station, near Tullahoma, Tenn. Figure
35(a) shows the experimental setup. A model of the bottom half of the RF-4C nose
with a Chicago Aerial CA-120 camera, is mounted on a splitter plate. Both full
scale and fifth scale models were used. The camera took pictures of a standard
Air Force resolution bar target through a collimator mounted in the wind tunnel
ceiling. The camera was equipped with a Xenotar 6-inch lens and the film used was
Kodak 3414. The target contrast was 1000:1. The external square aperture stop was
mounted diagonally with respect to the direction of flow and with respect to the
resolution bars as shown in Figure 35(b). Runs were made for various exposure
times, aperture settings, air densities, and mach numbers to determine optimum
exposure times and aperture settings for different flight conditioms.

Although the RF-4C Wind Tunnel Test was not designed for MTF computations, a
portion of the image resolution data can be used to develop simple models for o2 and
a to be used i+ Equation (4-17).

1. Background. In Section II it was shown that the image of a sinusoidal tar-
get of modulation CO is a sinusoid of modulation C; given by

c, = colr(v)l.o SC <l (4=57)

where ]T(v)l is the MIF of the imaging system. Normally the system would include
the boundary flow, aperture, and lens. In this particular case, however, lens
degradation is insignificant. We now define system resolution as the largest
spatial frequency vp,y at which the image can be resolved for the given value of
Co. Becuase the film in the camera and the eye of the individual recording the
regolution are not optically perfect, vp,x 1s always less than Vo the spatial
frequency at which T vanishes.

T(\’o) = 0 (4‘58)
Vmax < Vg (4-59)

In order to find v, threshold modulation (TM) is introduced. The TM is defined
as the lowest value of C; for which a target of a given spatial frequency can be
resolved. Figure 36 shows a typical TM plotted as a function of spatial frequency.
The TM i8 a function of the film and the human recorder. From the definition of TM
and Equation (4~57) we see that as long as the product Colr(v)l is greater than
TM(v), the image can be resolved. At v = vpay we have

TM(vmax) " COIT(Vmax

64

). (4-60) )
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If the MIF is factored into its diffraction and random parts, Equation (4-60) may
be written

TM(vmx) “ )
- ——— -61
c OTO(VEBX)

TR(vmax)
In analyzing the RF-4C test, Tg and TM are known as are values of vpax for some

particular conditions. For all practical purposes the target modulation for the
1000:1 target is one.

1000 - 1 .
Co 1000 + 1 - 1 (4-62)

Using this information we model 02 and a in Equation (4-17) for ?R such that
Equation (4-61) is satisfied. Although the target in the test was a rectangular-bar
target instead of a sinusoidal target, it was felt that the accuracy in determining
Vmax would be sufficient for this analysis.

Equation (4~61) shows that expressions for TM and T, are needed. Lauroesch
et al. have found that a good model for the TM is

2
TM(V) = bg + b,V (4-63)

where by and bj are constants.l8 The bg term is not a function of the film but of
the human observer. As spatial frequency increases from zero, the film MIF and

.8rain noise become increasingly important as indicated by the bjv¢ term. The value

of bp is approximately 0.03. The constant b; for Kodak 3414 film is found by _
solving Equation (4-63) for b; and using the data point T™M = 0,231 for v = 250 mm
or lines/mm.l

1

by = [TM(V) - by1/v? = 3.22 x 10™Om? (4=64)
Equation (4-63) is now

TM(V) = 0.03 + 3.22 x 10~6v2 (4-65)

where v is in lines/mm. The expression for 1 is found by using Equations (2-32)
and (2-25). : .

vxxf v_Af Dx 1_)1
ro(vx,vy) =[1- Dx 1 - —L—Dy , 0 £V, in_' 0 .<_vy Y (4~66)
This equation can be simplified by recognizing that Dy = Dy and defining
Af  Af
B = "D (4-67)
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Equation (4-66) becomes

ro(vx,vy) = (1~ Bvx) (1 - va). 0 < v o i% (4-68)

y

With the aperture diagonal to the target, the resolution is not a value of
either vy or v but of v, the spatial frequency along the diagonal between the

x and y directious. Since displacement along the diagonal is given by

r-Vx +y = /2x=/2y, (4-69)

the spatial frequency v 1s given by
vayvi+via /Ty =Ty (4-70)
x y X y .

Substituting Equation (4-70) into Equation (4-68) we have

ro(v) =1 - +v2Bv+ BZvZ/Z. 0<vx< -/Ti_. (4-71)
The camera aperture setting was £/22,
Lo fa, (4-72)
D D
x y

Since the source was white light, the wavelength is taken as

A=0.55%10° mm. (4=73)

Substituting Equations (4-72) and (4-73) into Equation (4-67) gives B,
B =0,0121 om, (4=74)
and Equation (4-71) becomes

To (v) =1-0.0171 v + 7.32 x 10-5\)2. (4-75)

Equations (4-65) and (4-75) are the expressions needed for TM and 1 respectively.
Plots of these equations are shown in Figure 37. We are now in a position to
look at the test data.

2, Data. Most of the data collected during the test is eliminated from the
analysis because of the two following considerations. First, we are interested
in the average of the random MIF, and therefore only data related to the longest
exposure times for each configuration is considered. Second, it is necessary to
know the MIF of the lens if the lens introduces significant degradation. At the
£f/22 aperture setting, performance was nearly diffraction limited, but at smaller
f numbers the lens produced significant degradation. Since the MIF of the lens
at the various f numbers is unknown, only data from the f/22 aperture settings
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are analyzed., Table I below lists the resolution data considered.l Each resolution
given is the average resolution for ten exposures.

Table I IMAGE RESOLUTION (LINES/MM) FOR RF-4C WIND TUNNEL TEST

Scale Full Full 1/5
Pressure altitude (ft) 8,000 40,000 8,000
Exposure time (sec) 0.010 0.010 0.001

Mach Number

.7 60 56
.8 37

.85 39 36
.9 40 66 36
.95 35 47

The fifth~scale 40,000 £t data was not used because the random flow degradation
was not significant. The data in Table I shows that no strong correlation exists
between Mach number and resolution for Mach numbers between .8 and .95. Since
optical degradation is greatest in this Mach range, only data from this range was i
used, and Mach number was excluded as a variable. :

A possible explanation for the lack of correlation may be that there was )
little change in the actual air speed in the vicinity of the flow separation. The
shock wave in front of the flow separation shown in Figure 1 indicates that the
air has been accelerated to some supersonic speed before reaching the shock wave.
A property of shock waves is that the flow deceleration through a shock wave
increases with an increase of flow speed into the shock wave. It is therefore
reasonable to expect that changes in the actual flow Mach number in the vicinity of
separated flow are not as great as the changes in the freestream Mach number.

Table II shows the data used in the analysis.

Table II DATA USED IN ANALYSIS OF RF-4C WIND TUNNEL TEST

Scale Full Full 1/5

Pressure Altitude 8,000 40,000 8,000

v (m ) 39 66 36

T nax) 0.444 0.190 0.479 '
™(v, ) 0.0305 0.0314 0.0304 o
T Vpay) 0.0687 0.1657 0.0635 <7 *
L(m) 0.1 0.1 0.02 ‘
o, (kg/m>) 0.882 0.221 0.882 |
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The optical path length (flow separation thickness) was determined from Schlieren
photographs. The density was found by using Equation (2-3). The pressure used
is taken from the ARDC model atmosphere20 for the given altitude, and the
temperature was taken as 297°K.

3. Results. Equation (4-20) shows that 02 is a function of L, a, and the __
variance of refractive index u“. Unfortunately we do not have a good model for p? in
a separated flow. It is, however, reasonable to assume that ;7 increases with
freestream density. We now have the problem of writing 02 and a as functions of
Pw and L such that Equation (4-61) is satisfied for each of the three configurations
in Table II. The turbulent boundary layer model in which 02 is proportional to
szg does not work. A model which does work, however, is

a = 0.067 L (4-76)

ol =1.2x1012 51 4=77)

All units are MKS. These two equations along with Equation (4-17) consititute our
model for the average separated-flow OTF. Figure 38 plots the resulting average
OTF's (including both separated flow and diffraction) for the three configurations
and the TM. The resolution data points vpay from Table II are also shown.

As with the MIF model for a TBL, there is doubt as to the accuracy of our
model for the average separated-flow OTF. But again, it is this writer's belief
that the model presented here is the best that can be found. The best hope of
achieving accurate models for the TBL and separated flow is to take direct random-
flow MTF measurements with a shearing interferometer under controlled conditions.
The feasibility of such measurements has already been demonstrated by Kelsall.

The Shearing Interferometer

The purpose of this subsection is to present a description of the shearing
interferometer and its use by Kelsall in aircraft flight tests. Although several
complications make it impossible to properly analyze the resultant data, the
experiment is important because Kelsall has demonstrated the feasibility of
making direct measurements of the boundary-flow MIF.

Corner-Cube Shearing Interferometer. The shearing interferometer is an
interferometer which can be used to directly measure MIF's. Figure 39 is a
simplified diagram of a corner-cube shearing interferometer introduced by
Hopkins.21 After passing through an aperture the incident beam is divided by a
beam splitter. The waves are then each reflected by a corner-cube retroreflector
and superimposed at the beam splitter with a lateral shear x. The power produced
by the superimposed beams is recorded. To guarantee that the two wavefronts are
in phase, one of the corner-cubes may be driven forward and back over several
wavelengths. The power output will then consist of an ac signal corresponding
to the overlapping portion of the wavefronts and a dc signal corresponding to
the power that would be received if there were no overlap. When the ac signal
is at its maximum, the wavefronts are exactly in phase. Kelsall has shown that
the amplitude of the ac signal 1s proportional to the MIF, 1(x/)f), associated
with the incoming wavefront.22 The radiant output power pow of the interferometer
is given by
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FIGURE 38
AVERAGE OTF’S FOR THE THREE RF-4C-WIND-TUNNEL-TEST CONFIGURATIONS

MCDOONNELL ANMCRAFT COMPANY

.

72

-



e e ——— - —

e

e

chdas L LE L, o PR,

REPORT MDC A2582
14 DECEMBER 1973

/— Piezoelectric

Corner Cube !

To Detector

FIGURE 39
BASIC DESIGN OF A CORNER-CUBE SHEARING INTERFEROMETER
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pow = a + B lr(ﬁ)l cos [6(x) + ut] (4-78)

where o and 8 are constants (8 < a), ¢ 1s a phase term which includes the OTF
phase, and w, is the angular frequency of the relative phase of the two wavefronts.
Figure 40 shows plots of power vs time for various shear values, x/D, where D is
aperture diameter. In Figure 40(a) the wavefront coming into the interferometer

is constant in time, and in Figure 40(b) the incoming wavefront varies in time as
would a wavefront passing through a TBL or separated flow region.

The average MIF for a particular spatial frequency is found by taking the
average ac power amplitude for the corresponding value of x and normalizing it
such that the normalized ac power amplitude at x = 0 is unity.

Kelsall's derivation examines the effects of finite bandwidth, inequality
of power of the two beams, and partial incoherence caused by unequal beam paths.
All of these effects increase the dc power level and decrease the ac power
amplitude, but the MIF is still proportional to the ac power amplitude. A
simpler derivation which does not examine these effects but deals only with the
basic principle of the shearing interferometer is presented in Appendix G.

Kelsall's Experiment. The corner~cube shearing interferometer used by
Kelsall is described in Reference 23. The corner-cube which moves forward and
back to produce the phase shift between the wavefronts is driven by a piezo-
electric device. Two identical glass plates are placed in the return paths from
the corner-cubes to the beam splitter. By turning these plates simultaneously
through a drum belt coupling, the shear x can be adjusted. These shear plates
and the piezo—electric driver are outlined with dotted lines in Figure 39.

Figure 41 shows the experimental arrangement used by Kelsall to measure
the turbulent boundary layer MTF of a KC-135 aircraft.® The source beam from a
He-Ne laser is expanded to 50 mm then reflected through the aircraft window by a
plane mirror and a beam splitter. The beam is reflected back through the window
by a 31 mm mirror mounted on an external airfoil 25 cm from the window. In this
way the beam passes through the same boundary flow region twice. The return beam
is then reduced by a 24 mm aperture telescope and passes o the shearing
interferometer. A removable air path shield allows MIF measurements to be made
without the boundary flow. Figure 42 shows the MIF's for the double pass. The
measurements were taken at 40,000 ft altitude at normal cruising speed.

We will not attempt to analyze the results of this experiment, but some
comments will be made. Obviously the MIF detected by the interferometer is not
the MIF of the boundary flow since the beam makes two passes through the flow.
To find the true value of Tp from the double pass value TRy, Kelsall assumed
that -1n(TR) is proportional to the total optical path length. Using our model
for T, Equation (4~17), which is also used by Kelsall, the assumption implies
that o« 1s proportional to the total optical path length. The relationship
between TR and TR would be

L =’r'% . (4=79)
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{a) Constant Wavefront (b) Variable Wavefront

o x/D=0

Increasing Shear x/D

o x/D =1
'
:
R FIGURE 40
‘; POWER vs TIME PLOTS FOR SHEARING INTERFEROMETER AT VARIOUS SHEAR VALUES
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FIGURE 41
KELSALL'S EXPERIMENTAL ARRANGEMENT F OR MEASURING THE
TURBULENT-BOUNDARY-LAYER MTF OF A KC-135 AIRCRAFT6
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FIGURE 42

AVERAGE MTF’'S FOR DOUBLE PASS IN KELSALL'S EXPERIMENTE
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Kelsall's assumption would be correct if the optical length of the return path 4
of the beam were independent of the optical length of the first path. Then 02
for the double pass would be the variance of the sum of two independent values
of A, a Gaussian variable. Using a law from probability theory, the o2 for the
double pass would be the sum of the 02 for the two separate passes. In other
words, Kelsall's assumption would be true. However, the optical lengths are
not independent. In fact, if the instrumentation is properly aligned, the two
optical lengths are the same, and the value of A is twice as large at every
point for the douul: pass. According to Equation (4-8), o2 for the double pass
would be_four times greater than for a single pass. Therefore the relationship
between Tp and Ty, should be

(4-80)

By using Kelsall's data and Equation (4~80) onme should be able to find Tg for
the KC-135 boundary flow. %215&11 also ran a wind tunnel test which was to duplicate
the flight test conditions.“* The results of the wind tunnel test showed no
significant optical degradation. Several factors may be responsible for the
discrepancy between the results of the flight and wind tunnel tests. L

1. The optical window was mounted flush to the wall in the wind tunnel
test; whereas, in the flight test the window was recessed about 1 inch.

{
3
2. In the flight test a temperature gradient of about 30°F existed between %

the skin and the outside air. ) k

3. 1t is possible that during the flight test warm air from inside the
aircraft escaped from openings in the skin forward of the test window
and mixed with the boundary flow air.

All three of these factors would tend to increase degradation in the flight test.
They also make a proper analysis of the results with regard to a boundary layer \
MIF very difficult if not impossible. i

Although the discrepancy between the flight and wind tunnel test results
shows that the flight test results cannot be applied to a general situation, the ’
test is important because it shows the feasibility of making direct measurements
of boundary flow MIF's.

Until now our discussion has been confined to the time average MTF. New
fast shearing interferometers now make it possible to take MIF measurements
almost instantaneously (~ one millisecond).

Fagt Shearing Interferometers. There are two types of fast shearing inter-
ferometer; the first was developed by Kelsall?5 and the second was developed by
workers at MCAIR. Basic designs of the two instruments are shown in Figure 43,
The two designs are similar, but because the MCAIR version is easier to describe,
it will be discussed first. N

TN R e L R L
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Rotating Shear
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{ (a) MCAIR Design (b) Kelsall's Design 2°
GP74-0200-43
FIGURE 43

BASIC DESIGNS OF THE MCAIR AND KELSALL FAST SHEARING INTERFEROMETERS
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As shown in the diagram of the MCAIR fast shearing interferometer, the _}

incident beam passes through an aperture and is divided by a beam splitter. The
two beams traverse, in opposite directions, the triangular path formed by the
splitter and two plane mirrors. The beams are recombined at the splitter with
gome lateral shear x. For small angular changes, the shear is a linear function

of the angle of the beam splitter. In addition, the optical path difference
changes rapidly with the splitter angle. These facts make both the shear plates
and the piezonelectric driver used in the corner-cube version unnecessary. The
splitter is mounted through flexural pivots to the interferometer frame and
oscillates from power supplied by an electrodynamic driver. Fortunately, an
oscillation amplitude of only a few degrees is necessary when the aperture diameter
D is one the order of one inch. A direct MIF reading is obtained from an
oscilloscope display by using the radiant power of the sheared beams and the
angular displacement of the splitter as the vertical and horizomtal scope inputs
respectively. Figure 44 shows two traces for a rectangular aperture, one with no
degradation and the other with random degradation. Notice that each trace actually
produces four MTF's, one in each quadrant.

In principle, Kelsall's interferometer shown in Figure 43 differs from the
MCAIR version only slightly. Shear change is produced by rotating a shear plate
in the path between the two mirrors at constant angular rate instead of oscillating
the beam splitter. Both shear and optical path difference are linear functions of
the shear plate angle, therefore, the time trace of the output power yields the MTF.

These two fast shearing interferometers provide a method for meacuring

directly boundary flow MIF's. The differences between the two approaches are )

subtile. Kelsall's inatrument provides a constant shear rate in contrast to the
varlable shear rate inherent in the MCAIR design. The MCAIR approach should be
capable of producing a faster MIF because of the lower mechanical motion required.
The faster the MTF is produced, the less sensitive it is to vibration and acoustic
noise. More information on Kelsall's instrument is available in Reference 25.

A detailed description of the MCAIR version will be published in a future MDC
report.
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{ FIGURE 44
SCOPE TRACE OF FAST-SHEARING-INTERFEROMETER OUTPUT POWER
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V. Parametric Analysis

The previocus sections presented the optical quality of turbulent boundary
layers, separated flow, and main flow in terms of either the OTF or phase error A.
In this section, the OTF s and phase errors will be used to compute the optical
effect of boundary flow on propagating and imaging systems. Beam cross-sections
and receiving apertures are circles of diameter D. The effect is presented in
terms of normalized central power density (NCPD) vs beam diameter for propagating
systems and in terms of resolution vs aperture diameter for imaging systems. The
following parameter values are considered.

Mach number ' 0.9
Altitude 8000 fc, 40,000 ft
Wavelengths 0.55u, 10.6u
Standard atmospheric conditions at the two altitudes are as folluws.zo
8000 ft 40,000 ft
Density (kg/m3; 0.940 0.303
Pressure (nt/m%) 75,000 18,800
Temperature (°K) 278 217
Speed of sound (m/sec) 334 295

In addition to main flow, turbulent boundary layers, and separated flow,
wake flow is also considered. It is treated as a speclal case of separated flow.
Shock waves are not considered because the only quantitative work done here in
that area con::rns beam direction only, not beam quality.

Often it is desirable to nredict the optical effects corresponding to a

full scale aircraft by using a scale model. The last subsection derives scaling
rules for achieving this objective.

Propagating Systems

The purpose of this subsection is to present the NCPD as a function of beam
diameter for main flow, TBL's, separated flow, and wake flow.

In Section II it was shown that the NCPD could be written as a function of
either the OTF, :

D
8 r
NCPD = ; 5“ T(A—f) r dr, (5-1)
or the optical phase,
D 2
NCPD = -9-2- | {eiu(r)r dr| . (5-2)
D

Main Flow. The first step in finding the NCPD for the main flow of a sphere
is to find A. Equation (3-15) was evaluated for 65 = 0, that is, for the beam
pointed directly into the flow. The sphere diameter used was one meter and the
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upper limit of the integral was set at £ = 50, which effectively is the same as % = =.
From the symmetry of the geometry, A is symmetrical with respect to the origin,
A(x,y) = A(r). Figure 45 is a plot of A(r) for altitudes of 8000 ft and 40,000 ft.

An approximation to the main flow NCPD can be easily obtained by approximating A(r)
with a parabola of the form

by(r) = w 2. (5-3)

Equation (5~3) 1is plotted as a dotted line in Figure 45 with A = Ap at r = (.2
meters.

Inspection of Equation (3-15) shows that for comstant values of 7 = x/R and
n = y/R, A is proportional to PR, where po is the freestream demsity.
(5-3) shows that for constant values of r/R, AB is proportional to w R".
fore if A(r) is approximated by Ap(r), then wR
proportional to Pw/R.

Equation
There-

is proportional to p.R, or w is

If A(r) is set equal to Ap(r) at r = 0.2 meters, the equation

for w is
w = -0.823 x 10°% p./E. (5-4) :
All units are MKS; w has units of meters_l.
) When a wavefront has a phase given by Equation (5-3), it is said to suffer

a defect of focus. The resulting NCPD is found by substituting Equation (5-3)
into Equation (5-2). The result is

neep = 201 = c;s@zmz/m.
(kwD"/4)

(5-5)

_p———.
JEOSNPIPEOCIPRF S

Equation (5-5) is plotted in Figure 46. The NCPD for main flow is found by
substituting Equation (5-4) into Equation (5-5). Figure 47 plots the NCPD as a i
function of the beam size D for altitudes of 8000 ft and 40,000 ft and for j
, wavelengths of 0.55u and 10.6u. The plots show that the main-flow effect is not ’
p ) serious for 10.6u at 40,000 ft. For the other conditions, however, the central

i power may vanish completely, depending on the beam diameter. , ;

Turbulent Boundary Layer. The average OTF for turbulent flow is given by
Equations (4-9) and (4-10).

— _ 2
‘t({?) - 'to(-;—f) exp{—kzozll-e (r/a) ]} (5-6)

With the diffraction OTF for a circular aperture, Equation (2-35), Equation (5-6)
becomes

_ 2 ] i
TED =L el ®-B -G exp{—k%zu-e (c/a) 1}, 0x< |

IR

Lr i Do (5"7)
1
|
|
|
\
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Beam Propagation is Into Flow
Sphere Diameter = 1 meter
Mach Number = 0.9
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FIGURE 47
MAIN-FLOW NORMALIZED CENTRAL POWER DENSITY (NCPD) vs BEAM
DIAMETER FOR MAIN FLOW OF A SPHERE
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For the TBL on a flat plate, 0% and a are found using Equations (4-53) and (4-54)
respectively. Figure 48 plots as a function of D the NCPD found by substituting
Equations (5-7), (4-53) and (4-54) into Equation (5-1). The figure shows NCPD
pPlots for altitudes of 8000 ft and 40,000 ft and for wavelengths of 0.55u and 10.6u.
Distance from the leading edge of the flat plate is two meters. The plots show that
the TBL effect is generally weak. In fact it is completely negligible at both
altitudes for the 10.6u wavelength. At the shorter wavelength, the NCPD drops to
minimums of 0.85 and 0.98 for altitudes 8000 ft and 40,000 ft respectively. The
fact that the NCPD remains constant at its minimum value for all but the smallest
aperture sizes is a result of the small spatial scale of the wavefront digturbance.

Separated Flow. The NCPD for separated flow is_found by again substituting
Equation (5-7) into Equation (5-1). The values of 0° and a are found by using
Equations (4-76) and (4~77) respectively. Figure 49 plots NCPD as a function of
D for altitudes of 8000 ft and 40,000 ft and for wavelengths of 0.55u and 10.6u.
The separation thickness is 10 cm. The plots show the strong dependence of the
separated flow effect on wavelength. At 10.6u the NCPD drops to only 0.96 and 0.99
for altitude of 8000 ft and 40,000 ft respectively. At 0.55u, however, the NCPD
drops to less than 0.01 for both altitudes. As with the turbulent-boundary-layer
NCPD, the small spatial scale of the wavefront disturbance causes the separated-
flow NCPD to be comstant for all but the smallest values of D.

Wake Flow. In this subsection the NCPD for the wake flow behind a sphere
one meter in diameter is considered. The problem is treated as a special case of
separated flow. Figure 50 shows the problem geometry. The angle between the
polar axis, which points into the flow, and the direction of propagation is 6,.
For purposes of calculating the correlation length, a, the separation thickness
is taken to be equal to the sphere radius R. Equation (4-77) becomes

a = 0.067R. (5-8)

The average optical path length through the wake flow is given by

L= R‘ml. -1). (5-9)

%

Since Equation (4-20) implies that 02 is proportional to the optical path length,
Equation (4-76) becomes
o2 2

=1.2 x 107¢ "““ﬁ" 1. (5-10)

Figure 51 1s a plot of the resulting NCPD as a function of beam width for altitudes
of 8000 ft and 40,000 ft and for wavelengths of .55u and 10.6u. The sphere radius
R is one-half meter, and the polar angle 8y is_135°. The NCPD for wake flow is
similar to the NCPD for separated flow. The 0 value is larger for the wake flow
because of the longer optical path. This larger value of 62 causes the NCPD to
drop to lower values for the 10.6u wavelength, 0.85 at 8000 ft and 0.95 at 40,000
ft. On the other hand, the value of the correlation le¢ -h is larger for the

wake flow than for the separation flow. The result is that the NCPD reaches its

‘:Fminimum value at larger values of D.
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FIGURE 48
NORMALIZED CENTRAL POWER DENSITY (NCPD) vs BEAM DIAMETER FOR THE
TURBULENT BOUNDARY LAYER ON A FLAT PLATE
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NORMALIZED CENTRAL POWER DENSITY (NCPD) vs BEAM DIAMETER
FOR SEPARATED FLOW
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Prapagation Angle 8, = 135°
Sphere Diameter = 1 meter
Mach Number = 0.9
1.0

A = 10.81, Altitude = 40,000 ft

A = 10.6. Altitude = 8000 ft
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FIGURE 351
NORMALIZED CENTRAL POWER DENSITY (NCPD) vs BEAM DIAMETER FOR
THE WAKE FLOW OF A SPHERE
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Summary. In general boundary flow has only a slight effect on 10.6u radiation. |
The only exception is the effect of main flow at low altitudes in which the NCPD
may drop below one percent. At a wavelength of 0.55y main flow, separated flow,
and wake flow can all cause the NCPD to drop below one percent, depending on the
beam diameter. Only the TBL effect is not drastic.

Imaging Systems

A common criterion for measuring the performance of an imaging system is
system resolution vpyx. The units of wpax are inverse distance, for example,
m~1 or lines/mm. The value of vpgax is found by using Equation (4-57),

™) = Colrev I, 0<¢p<1, (5-11)

where lr(vmax)l is the MIF of the boundary flow, aperture, and lens, TM(v) is the
threshold modulation of the film and human recorder, and Co is the target modulation.

In an idealized system in which T™(v) vanishes and t(v) is diffraction limited,
the resolution vp,y is equal to the spatial frequency vg at which the diffraction
MTF, |10(v)| vanishes.

ltovpa) | = |Tg(vg| = 0 (5-12)
From Equation (2-35) o is given by
r = Afyy = D (5-13) )
or
D
“max “Vo " 3£ (5-14)

where D is aperture diameter, A is wavelength, and f is focal length.

To find vpax for a real system, Cg, T(V), and TM(V) must all be specified.
However, there is a method of approximating the effect of boundary flow on image
resolution by using only the MIF for the aperture and the boundary flow. This
method allows us to examine the effect of boundary flow on imaging systems without
specifying a particular system. Let Ty (v) and vy be OTF and resolution respectively
for the system excluding boundary flow. Let t(v) and Vmax be the OTF and resolution
respectively for the system including boundary flow. Figure 52 shows plots of
€olTL(v)| and Cg|t(v)|. We assume that v; is small enough so that the TM is fairly
constant for v<vy. This assumption is usually accurate for aerial reconnaissance
situations because Cg is small, say 0.1 to 0.3. Two new linear OTF's, ri‘(v) and
1°“(v), are constructed such that the NCPD's corresponding to Tj and T{’ are equal
and the NCPD's corresponding to T and T°° are equal. The resolutions corresponding
to t{° and " are vi’ and vpax respectively. The equations for Tf° and T°“ are
respectively

TL(v)-l-v/hL-l'.):f_hL" 0OsvesF<h (S-IS)D
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Modulation

Spatial Frequency »

FIGURE 52
APPROXIMATION OF SYSTEM RESOLUTION USING A LINEAR OTF
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and

(M) =l-v/hel-FF 0<ve=ir<h (5-16)

where hL and h are defined by
r‘i(hL) = t““(h) = 0. (5-17)

The values of the NCPD's are found in terms of hj, and h by substituting Equations
(5-15) and (5-16) respectively into Equation (5~1).

Afhy,
8 Ath _
nae, =55 [ - Eo) rar - d A (5-18)
D™ o
xfh
= 4 (Afh,2

NCPDL is the NCPD corresponding to T; and Ti‘.

The ratio vpa./vy is approximated by vmax/vi". From the geometry in Figure
52 we have

v°’ .
7?,1 - %L- (5-20)

Solving Equations (5-18) and (5-19) for h; and h respectively and substituting
into Equation (5-20) we arrive at the approximation formula,

~n

max s Vmax - NCPD

Vi VL, NCPDL (5-21)
Let us now work a sample problem with the following input parameters.
Wavelength .55 gizttgge gogo fe
Focal Length 152.2 mm Film Kodak 3414

Aperture size 9.5 mm (£/16)
Target contrast 2:1
Type of
degradation 10 cm flow separation

Lens Degradation None

First the resolution vpyy is found using Equation (5-11). The TM(v) for Kodak 3414
film is given by Equation (4-65). From the target contrast of 2:1 and from Equation
(2-50), Cg must satisfy

1+ Co 2
- (5-22)

1l - C0 1

or
1 -
Co = 3 (5-23) D
ANODOAMNELL ANNORAFY OOMPANY
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The MIF is given by Equations (5-7), (4-76) and (4-77). For an altitude of 8000

ft, pois 0.940 nt/m2. The value of L is 0.01 m. Figure 53 plots both TM(v)

and C,t(v) as a function of v. The resolution is fuund to be upax = 30 lines/mm.
The function CgTg(V) is also plotted in Figure 53. The corresponding diffraction
limit resolution is vp = 84 lines/mm. To use the approximation formula, Equation
(5-21) we set v, =vp = 84 lines/mm and NCPDy, = 1 since there is no lens degradation.
From Figure 49 the value of NCPD is 0.115. Using the approximation

. NCPD | e -
Voax VL NCPDL vp YNCPD, (5-24)

the system resolution vpyy becomes 28 lines/mm. We see that for this case
our approximation for vpyx is good.

Often it is convenient to express the performance of an imaging system in
terms of angular resolution AR or ground resolution GR. Figure 54 shows geometrically
how AR and GR are related to Vpax. The relationship may be expressed as follows.

1
AR = 3 (5-25)
GR = SR-AR = i’\f (5-26)
max

The term SR is the slant range from the ground target to the imaging system. In

the idealized imaging system corresponding to Equation (5-14), AR and GR become
respectively

AR = D (5-27)
and
A
GR = SR‘B. (5-28)

Figures 55 and 56 show Vp,, and the corresponding values of AR and GR as functions
of D for the different types of boundary flow. In Figure 55, altitude is 8000 ft,
in Figure 56, 40,000 ft. Also shown are the diffraction-limit resolutions vp.

The system resolution vpay 18 calculated using the approximation formula,

Equation (5-24). Values of wavelength, focal length, target contrast, mach number,
and lens degradation are the same as those in the sample problem. Conditions for
each type of flow are the same as those used in the Propagation Systems subsection.

In calculating GR, vertical imaging was assumed, so that slant range equals the
altitude.
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FIGURE 53
MTF AND TM CURVES FOR SAMPLE PROBLEM
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Film
_\-_.. [ e 1/ymax

Lens

Vmax= System Resolution
AR = Angular Resolution
GR = Ground Resolution
f = Focal Length
SR = Slant Range

Ta rget —\

AR
AR

AMODONNIELL ANMORAFT COMPANY

}— GR —f

/\/\/\/\ R

FIGURE 54

RELATIONSHIP BETWEEN RESOLUTION vpyax. ANGULAR RESOLUTION AR,
AND GROUND RESOLUTION GR
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FIGURE 56

RESOLUTIONS vmax. AR, AND GR vs APERTURE DIAMETER FOR AN ALTITUDE OF 40,000 ¥T
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Scaling

This subsection derives the scaling rules for preaicting the boundary-flow
optical effects of a body from a similar body of different scale. The derivation
uses the aerodynamic scaling rules from Section II.

We specify here that when the body is scaled, the aperture area or beam cross-
gection area I 18 scaled by the same factor. For the moment we assume that all
linear dimensions of the boundary flow are also scaled by the same factor. Let the
aerodynamic system containing the original body be defined as System 1, and let
the system containing the scaled body be System 2. Let S be the scale of Body 2
relative to Body 1. If the two bodies are the same size, S is one. Given the
temperature T), Mach number M;, density pj, and wavelength A; of System 1 and the
scale S, we wish to find the appropriate temperature Ty, Mach number M;, density
pp, and wavelength A2 for System 2 such that the two systems produce similar
optical effects. Similar optical effects are produced if the pupil functions are
similar.

Since the amplitude part of the pupil function is constant, Equation (5-29) is
satisfied if the phases are similar,

or

Al(x.y)/x1 = AZ(Sx.sy)/Az. (5-31)

Given Ty, M3, Py, A1, and S the problem is to find Ty, M2, p3, and A such that
Equation (5-31) is satisfied. The equation relating the two areas, I1 and I,,

= 2 -
L, = s, (5-32)

and Equation (2-28) show that if Equation (5-31) is satisfied, then the OTF's of
the two systems are similar.

x y Sx Sy )
T, [ =, ). T (__' (5-33)
1(Alf1 A £y 2\ X8, X5,

Likewise Equation (2-51) show that if Equation (5-31) is satisfied, then the
NCPD's of the two systems are equal.

NCPD, = NCPD, (5-34)
MODONAMELL ANMCRAFT COMPANY
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General Case. Rules are now derived for finding appropriate values of T3, Mo,
p2, and Aa. These rules may be applied to all types of boundary flow.

The relationship between A and density p is given by Equation (3-3).

L
Ax,y) = K [ [o(x3,2) - 0(0,0,2)] dz (5-35)
0

Substituting Equation (5-35) into Equation (5~31) yields

L1 SLy (5-36)
K—f [o(xy,2)~o(002)]dz=-ls- f[p(st z) - 0,(0,0,2)] dz
xl l ? A ] Az 2 ] Y’ °2 sV
0 0
or
Ll Ll (5-37)
p°°1 f Dl(x,Y.Z) - p0(0,0,2) d = SDQZ f pz(Sx,Sy.Sz) - Dz(otonsz) ds
Moo Pul ‘2 % Pe2
where Pewl and p,y are the freestream densities.
Examination of Equation (5-37) shows that if the equations
P SO
1:;1' = Tl (5~-38)
1 2
and
pl(x9Y'z) pz(Sx,Sy.Sz)
- (5-39)

Pe1 Pw3

are satisfied, then Equation (5-31) is satisfied. Equations (5-38) and (5-39) are,
therefore, the general optical scaling rules. Generally Pe2 and Ao can be adjusted
so that Equation (5-38) holds. Equation (5-39) will hold if the aerodynamic flows

for the two systems are similar. Section II shows that similarity of the flows

is guaranteed if the Mach numbers and Reynolds numbers are equal.

M, =M

1 2 (5-40)

fyYy

0,V
Y\

(5-41)

.

g ey
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For equal temperatures

Tl = Tz (5-42)

and Mach numbers, Equation (5-41) becomes

(I Se,. (5-43)

Substituting Equation (5-43) with freestream values of p1 and py into Equation
(5~38) yields .

/\1 = Xz.

(5-44)
In terms of freestream values the general optical scaling laws may be summarized
as follows

Top = Tags May = Mops 0oy =Soaps Ay = A, (5-45)

If Equations (5-45) are satisfied, the two systems produce similar flows and
similar optical effects and Equations (5-31), (5-33), and (5~34) all hold.

In scale model testing it is often difficult or impossible to meet the
requirement for density. Approximately similar optical effects can be produced,
however, even if the requirements in Equation (5-45) are relaxed as shown below.

Main Flow. We have shown that if Equations (5-38) and (5-39) are satisfied
the two systems produce similar optical effects. Using Equation (3-4), which is
based on the Karman-Tsien approximation for subsonic main flow, we can now show
that Equation (5-39) is automatically satisfied for subsonic main flow if free-
stream temperatures and Mach numbers for the two systems are equal.

Substituting Equations (3-5), (3~6), and (3-9) into Equation (3-4) yields

1
—— 2 2 2
- y=1 2(v=-)M" + 4 - V (x,¥,2)/a
Ax,¥,2) . (1 + Lzl MZ.) °2° 5 = (5~46)
P Z(Y-l)uu +4+V (xty’z)/8°

where V is the potential-flow velocity field. It is a property of potential flow
that similar bodies of different scales produce similar velocity fields

v1(39Y9z) Vz(Sx,Sy,Sz)

- . (5-47)
v U,

AMODOMVELL AMROCRAFT COMPANY
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The U's are freestream speeds. If the freestream Mach numbers and temperatures
are equal, then the freestream speeds are equal.

U1 = U2 (5-48)

Equations (5~46), (5-47), and (5-48) show that Equation (5-39) is satisfied. The
optical scaling rules for subsonic main flow may be summarized as follows

Po1 _ o Pmp

A

(5-49)
A 2

Tm]_ = Twz’ Mwl = Maz’

Turbulent Boundary Layers. Although we have no equations for A or p in a
random flow, we do have equations for the average OTF. For this reason Equation
(5-33) 18 used as the similarity condition to be met rather than Equation (5-31).

Assuming that freestream temperatures and Mach numbers are equal for the two
systems, Equations (2-34), (4-9), (4-16), (4-53), and (4-54) yield

12/7
T (.X_f- _x_) -t (_x_ _y__) exp | e —erty)
L0, o1 (X, 5" N F; 3 Ai
' ‘ (5-50)
2. .2 1
- - X +1
x[1 "‘P( - 2T 12/7)J
4P=1 1
and
12/7
SX.)
- (5x sy \ . sx_ _Sy R
’Z(Af'xf) Toz(xf'xf)e"" e T
2t Aot 2f2 2oty Xy
X{11-=exp|- < o -2/ 12/T 1277
4Pe2 1

where ¢3 and c; are constants and where T3 and 12 are the diffraction-limit
OTF's corresponding to Systems 1 and 2 respectively. Note that the Ty's are
always equal. For T] and T2 to be equal, the following equations must be satisfied.

o 1207 o 1207
‘;1 - 22 (5-52)
A A
1 2
bug?7 w7 217 (5-53)
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Pay = SPwy (5-54)

11 - Az. (5-55)

These are the optical scaling rules for the general case. However, it is

possible to relax Equations (5~54) and (5-55) and still obtain approximately
similar optical effects if the wavelength is properly adjusted. Equation (5-51)
shows that the exponential term varies according to the two-sevenths power of

p,zs and according to the second power of x. Equation (5-53) can, therefore, be
ignored without too much error provided that Sp.,; 1s within a factor of two or three
of pw)]. Then only Equation (5-52) must be satisfied. This equation, however, is

approximately the same

as Equation (5-38). The following scaling rules may,

therefore, be used to obtain approximately similar optical effects for a TBL.

4] (4]
- - =l g =2 _
Top ™ Top® Moy = Maps X s X, (5-56) ,

These are the same equations that were derived for subsonic main flow.

Separated Flow. The rules for separated flow are found in the same way as )

the rules for the TBL.

Assuming that Mach numbers for both systems are in the 0.8 - 0.95 range,
Equations (2-34), (4-9), (4-16), (4-76), and (4~77) yield

e S 2

and

e e i e wm = e

i
Pen SL 2.2 22 o
- [ sx _sy Sx Sy 2" s°x” + sy
T s 1 [— expi- ¢ 1 - exp|- (5-58) Sk
|
i

. e 4 e il

x y p"lLl xz + y2
= 101 XIEIEXIfl exp -c5 N 3 1 - exp{- --;TTf-) (5=57)
1

%1

2

PP T
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where c5 and cg are constants. For these two average OTF's to be equal the
following equation must be satisfied.

P p
ol g =2 (5~59)
22 22

1 2

The scaling rules for separated flow may be summarized as follows.

) P
0.8 <M, M, <0.95 =55 (5-60)
)\1 >‘2

Since wake flow is a special case of separated flow, these rules also apply to wake
flow.

Summary and Comments. Figure 57 summarizes the optical similarity rules for
the general, main-flow, TBL, and separated-flow cases. It must be remembered
that the rules for main flow, TBL, and separated flow were derived from models
which are only approximately correct. Even so, all of the scaling rules are
consistant, since satisfaction of the general rules implies satisfaction of the
other scaling rules.

The rules for most of the cases include the equality of the freestream
temperatures. It should be noted that even if these temperatures vary from each
other by several degrees, they may differ by only a few percent on an absolute
scale.

Approximations for Vatious Flow Types

Rutes for
Genersl Case Subsonic Turbulent Seperated
Main Flow Boundary Layer and Wake Flow

Moot * Moo | Mooy = Moo Mooy = Mool 0.8 < Mooy, Mooy €0.95
Pooy Poo Poo Poo Pooy Pool

p“’.%z — G e— —-s—-

A Ay LY Ay ,\‘2 k22

A=A

GP74.0200-87
FIGURE 57
OPTICAL SCALING RULES
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Appendix A

Notations, Symbols, and Important Equations

This appendix is divided into five parts:

Acronyms
Abbreviations for Units
Notation for Operations

Symbols

Important Equations

Acronyms

MIF Modulation Transfer Function
NCPD Normalized Central Power Density
OTF Optical Transfer Function

™ Threshold Modulation

TBL Turbulent Boundary Layer

Abbreviations for Units

°K Degrees Kelvin
kg Kilogram

m Meter

mh Millimeter

nt Newton

v Micron

Notation for Operations

E Expected value
Is an element of

¢ Is not an element of
(superscript) Complex conjugate

— {(overbar) Time average
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Constant (Equations (4-67) and (4-68))

Radiant power emerging from an aperture

Fluctuating pressure coefficient
Diameter of circular aperture
Dimension of rectangular aperture

Dimension of rectangular aperture

Diffraction - limit pupil function
Pupil function for System 1
Pupil function for System 2

Working variable (Equations (3-7) and (3-8))

Image irradiance or power density in the focal plane

Zero~order Bessel function of the first kind
First-order Bessel functien of the first kind
ith-order Bessel function of the first kind

Physical length of optical path

Physical length of optical path for System 1

Free-stream Mach number for System 1
Free-stream Mach number for System 2

Normalized central power density
Normalized central power density with no boundary-flow effect

MODOANELL AIRORAFT CORMPANY
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L Symbols
A Optical-wave amplitude
AR Angular resolution
B
c
C0 Target modulation
C1 Image modulation
CP
D
Dx
DY
F Optical-wave function
G Pupil function
€o
¢y
€2

o GR Ground resolution

{ H
-1
I0 Diffraction limit of I
o
1
I3
K Gladstone - Dale constant
L
L
M Mach number
“1 Mach number for System 1
Mz Mach number for System 2
M, Free-stream Mach number
May
Ma2
N Refractive modulus
NCPD

C o,

e
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Normalized central power density for System 1
Normalized central power density for System 2

Object radiance

Pressure

Water-vapor pressure

Freestream pressure

Normalized output power for Stine~Winovich experiment

Radial coordinate (\Ez + Y2 )

Radius of sphere

Reynolds number

Scale

Fourier transform of image radiance
Fourier transform of object irradiance '
Slant range

Temperature '
Temperature for System 1

Temperature for System 2 )
Preestream temperature )
Freestream temperature for System 1

Freestream temperature for System 2
Threshold Modulation

Complex amplitude of optical wave in the focal plane
Freestream airspeed

Freestream airspeed for System 1

Freestream airspeed for System 2

Speed of fluid (air)

Air speed for System 1

Air speed for System 2 ;
Optical wavefront

Characteristic linear dimension

Distance from leading edge of a flat plate

Cartesian coordinate in the focal plane

Cartesian coordinate in the object plane :

Cartesian coordinate in the focal plane i :
Cartesian coordinate in the object plane {:) )
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Speed of sound in a fluid (air)

Correlation length of wave phase A

Stagnation or reservoir speed of sound
Criti_al speed of sound

Correlation length of wave phase 4 in the x~direction
Correlation length of wave phase A in the y~direction
Freestream speed of sound

Constant in threshold modulation model
Constant in threshold modulation model

Speed of light

Working variable (Equations (3-15) and (3-16))
Working variable (Equations (3-15) and (3-17))
Constant (Equations (5-50) and (5-51))
Constant (Equations (5-50) and (5-51))
Constant (Equations (5-57) and (5-58))
Constant (Equations (5-57) and (5-58))
Specific heat at constant pressure

Specific heat at comstant volume

Focal length

Focal length for System 1

Focal length for System 2

Acceleration of gravity

-

Spatial frequency at which t°“ vanishes

P

L vanishes

Spatial frequency at which t

_ Wave number (2n/1)

Wave number for System 1

Wave number for System 2

Physical length of optical path normalized by sphere radius
Integer

Refractive index

Refractive index ahead of shock wave

Refractive index behind shock wave

Point spread function

Radiant output power of a shearing interferometer

Working variable (Equations (3-15) and (3-18))
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Radial coordinate Nxz +y°)

Radius of source aperture in Stine-Winovich experiment
Radius of collection aperture in Stine-Winovich experiment
Distance along optical path

Time

Fluid velocity component in the x~direction

Dummy variable in Equation (4-49)

Horizontal velocity component ahead of shock wave
Horizontal velocity component behind shock wave
Normalized value of uy (ullac)

Normalized value of u, (uzlac)

Fluid velocity component in the y-direction

Vertical velocity component behind shock wave
Normalized value of v, (vzlac)

Spherical abberation parameter (Equation (5-3))
Working variable (Equations (3-~7) and (3~10))
Cartesian coordinate

Cartesian coordinate

Cartesian coordinate

Cartesian coordinate

Cartesian coordinate

Cartesian coordinate

Optical-wave phase

Optical-wave phase in terms of normalized coordinates f and n
Optical-wave phase for System 1

Optical-wave phase for System 2

Optical-wave phase for defocused system

Variation of pressure from its mean (P-P)

Refractive index change across shock wave (nz-nl)
Variation of density from its mean (p-p)

Density change across a shock wave (pz-pl)

Refraction angle for a beam crossing a shock wave
Aperture area or beam cross-section area

Aperture area or beam cross—section area for System 1

Aperture area or beam cross-section area for System 2
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z& ¢ Covariance function of wave phase A
a The dc component of pow
B The ac amplitude of pow
] Shock wave angle
Y Ratio of specific heats (cp/cv)
s Delta function
8 Boundary layer thickness
§* Boundary layer displacement thickness
z Cartesian coordinate x normalized by sphere radius
n Cartesian coordinate y normalized by sphere radius
] Polar coordinate (Equations (3-15), (3-18), and (3-19))
6 Ramp angle in plane oblique shock wave problem
emax Maximum ramp angle capable of producing a plane oblique shock wave
eo Angle between polar axis (direction pointing into flow) and direction
of propagation
K Coefficient of thermal conductivity !
A Optical wavelength .
I ¥ Optical wavelength in System 1 :
Az Optical wavelength in System 2 ;
o Variation of refractive index from its mean (n-T) !
M Coefficient of viscosity §
Uy, Freestream coefficient of viscosity
v Spatial frequency
vo Spatial frequency at which OTF vanishes
! vy Spatial frequency in the x~direction
vy Spatial frequency in the y~direction
j Ymax System resolution
! vp System resolution with diffraction OTF and nonzero T™
Vi, Resolution corresponding to W
“‘Ax Resolution corresponding to t”
v Resolution corresponding to rﬂ'
[ [ Cartesian coordinate z normalized by sphere radius i
; o Density
' o Stagnation or reservoir density
c (2 Density ahead of shock wave
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Density for System 1

Density behind shock wave

Density for System 2

Freestream density

Freestream density for System 1

Freestream density for System 2

Standard deviation of wave phase A

Variance of wave phase A (Square of g)

Optical transfer function (OTF)

Diffraction-1limit OTF

OTF for System 1

OTF for System 2

Diffraction-limit OTF for System 1

Diffraction-limit OTF for System 2

OTF for controlled wavefront aberrations

OTF of system with no boundary-flow effect

OTF degradation caused by random wavefront aberration (r/rc)

Measured value of Tk for double pass through boundary layer in Kelsall teﬁ*?
Linear OTF with same NCPD as t !
Linear OTF with same NCPD as t
Minimum value of Tk

L

Phase factor
Angle between beam crossing a shock wave and the normal to the shock
wave
2 2 2
Normalized radial coordinate (Vz“ + n“ + £° )
Angular frequency of optical wave (2wc/)\)

Angular frequency of relative phase of the two wavefronts in a
shearing interferometer
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I Important Equations

All units are MKS unless otherwise noted. Optical scaling rules are listed
in Figure 57.

Relationships Between the Aerodynamics Parameters p, P, T, Yy, and a (Speed of
Sound).
P=287pT (2-3)
Yy = 1.4
2 =y - /28T (2-53)
Relationghips Between A, n, K, and p.
n=1+Ko (2-5)
-3, , 7.52%10°5 3
K= 0.223 X 10 (1+——‘—2_)n /kg @
Af i
K = 0.223 X 107> (2-7) I
L
8x,y) = [ n(x,y,2) dz + m (2-13) ;
0 f

I1f A is normalized according to A(0,0) = O, then the equation for A is

A(x,y) = f [n(x ,y,2) - n(0,0,2)] dz. (3-2)
°
Likewise,
L L
A(x,y) "f [n(x,y,2) - 0] dz 'f u(x,y,2) dz (E-5)
0 0
. 18 used if A is normalized according to A(x,y) = O.

Y

<
"
p
i
5
¥

(%]
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Relationships Between the Optics Functions A, I, 1, and NCPD.

Gip =1 Jf o I )

rovh

I(X,Y) =

(6)?

1
NCPD = =5
2:2

x exp{i[a(x"+x,y"+y) - A(x",y7)]} dx” dy~

- 1 (x¥) €
Go(x)Y) {0 (x,y) ‘

ff 1(X,Y) exp[ k (xx + y¥)] dx av

ff (E D exp[-EGx + y0)] ax dy

ce
a2

1,(0,0) =

C = AMAL = f?r(x,v) dx dy

NCED = & f] (35D dx dy

I 6pxe e ) ax gy 2

The following equations apply to systems with rotational symmetry.

If

D
ncep = & fr(rf) r dr
p?

0

"p/2
f e:l.kA(r) r

0

NCPD =

64
4 dr

D

Ar) = A (x) = w2,
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(2-28)

(2-29)

(2-21)

(2-43)

(2-48)

(2-22), (2-23)

(2-49)

(2-51)

(2-50)

(2-52)

(5-3)

EL T TR W PR PN
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then

wepp = 201 = cos(kazl-’Q]
(kwD /4)

Wave-Phase Equations for Subsonic Main Flow.

L

- l -~ w‘lannE)_ l-w (0 J——)-
A(x,y) H 1+ w‘(x,y,z) l+w (O 0,2) dz

1

Y-l
H=K  w(l + L= M 3

2 2
v (x,y,2) = 1KoY D) /a0

2(Y-1)M;2 + 4
The following equations apply to a sphere of radius R.

t=x/R n=y/R £ = g/R

v=g?+nl+ee? LeLm
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(5-5)

3-7

(3-8)

(3-10)

(3-13)

(3-14)

- q(8,¥) <=1 -q (eo.E)

A(x,y) = A" (c,n) = bokczér ci + q(8,y) "

¢ = [20-0M 7 + a1/m 2

1
e, = 1+ Ghy 2l

Q(6,4) = 1+ (1 - 3 cos26)/u> + 1/4(2 + 3 cos28)/u®

cosd = (Ecoseo - nsineo)/w

115

(3-15)

(3-16)

(3-17)
(3-18)

(3-19)




B i e

Diffraction Angle for a Beam Crossing a Plane Shock Wave.

M.zlinzﬂ -1
A = =2Kp tan ¢
1 (Y-I)Mazsinzﬁ + 2

Equation for T, 12_. and a for Random Flow.

- X Y. X V= .X_Y
TGQeag) ™ oG 26)RGE A

-(r/a)z

X _Y - Iy o 2 20,
R(xf XE) = TR (xf) exp{-k“c“[1-e 1}

For a TBL
o? = 4.4 x 1071262 T 2

a = 0,086
For a TBL on a flat plate

0 = 4.04 x 10“15”12/71“1/151“26/7](12/7

a=7.66x 10-49,-1/7T“1/28Mb-1/7x6/7
For a separated flow

o? = 1.2x10 1% 1

a = 0.067L

For a wake flow behind a sphere of radius R

2

-«1.2x10 % Rq——
a = 0.067R
Equations for Imaging Systems
- X 2
Ve " Xf Yy ® 2t
velo
Y
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(3-39)

(4-9)

(4-16)

(4-52)

(4-50)

(4-53)

(4-54)

(4-76)

(4=77)

(5-10)

(5-8)

(2-25)

(-18) I

il

e S A AU o - 0
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Threshold modulation model

™M(V) = by + by v? (4-63)
For Kodak 3414 film
™M(v) = 0.3 + 3.22 X 10~52 (4-65)
where v is in mm-l or lines/mm.
Resolution condition
™, ) - cof'r(vm)l (4-60)
Resolution approximation
vnax NCPD
— Vs (5-21)
VL NCPDL

Relationships between system resolution, angular resolution and ground resolution

1
AR = - (5-25)
vw
GR = SR * AR = fSR (5-26)
\)m

For an idealized system in which TM(v) vanishes and 1(v) is diffraction limited.

D
Vmax = Af (5-14)
A
AR = (5-27)
GR = sn% (5-28)
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Appendix B

Derivation of A(x,y) for the Main-Flow Sphere Problem

Equations (3-7) through (3-11) give the general solution for A(x,y).

L
- l-wi(x,y,2z) 1-w'(0,0,2) _
A(fo) Hdr 1+ wi(x,y,z) 1+ w(0,0,2) dz (B-1)
1
H = Ko..(l + l'ii HOZ)Y_]' (B-2)
M, = U/a (8-3)
2 2
w‘(x’y’z) - v (x:y'Z)/aa (8-4)
2(7-1)14,2 + 4
Vz(x,y,z) < aaz (8-5)

The purpose of this appendix 18 to find V for a sphere (of radius R from which
A(x,y) may then be found. The problem geometry is shown in Figure 15. The
quantity V is the air velocity calculated from potential flow theory.

The velocity potential Y must satisfy the Laplace equation,

VZV = 0, (B-6)

and the problem boundary conditions. The velocity V is the gradient of ¥. The
radial and polar velocity components, V, and Vg respectively, are given in terms
of ¥ by

V == (B-7)
and

-~ 15
T (B-8)
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From the symmetry of the problem geomet.v the azimuthal component V4 is zero.
The boundary conditions are as follows.

1, For r >> R

V. = -U cosé Vg ™ U siné (3-9)

2, Forr=R

v =0
T

For our problem (V¢ = 0) Equation (B-6) becomes

1 5f28¢¥ 18 8y -
r—z--s—;(r Gr)+ —_rzsine %-(sine 69)' 0. (B-11)

An expression for ¥ is needed such that the boundary conditions and Equation
(B~11) are satisfied. Such an expression is

R3
Y = =yUir + -3 cosb, (B-12)
2r
The velocity components are
3,3
v = =U(1 - R7/r7) cos® (B-13)
and
R3
v, = U{l + — ) sine. (B-14)
] 3
2r

In order to calculate the integral in Equation (B-1), the coordinates r and 6
must be related to the coordinates x, y and z in Figure 15.

tz = xz + y2 + 22 (B~15)

An expression for 0 in terms of x, y and z is found by taking a vector from the
sphere center to the point (x,Y,z), and then expressing the projection of this
vector on the polar axis in both coordinate systems. Equating the two expressions
yields

r cosd = z coseo -y sineo. (B-16)

v o
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For simplicity the following normalized coordinates are used throughout the
rest of this appendix.

t=*x/R ney/R E=z/R
(B~-17)

2

Va2l a?en?e? e

The normalized velocity-square function, q(8,y) = V2/U2 becomes

v24y?2
r ]
UZ

=1+ (1-~3 cosze)/¢3 + 1/4(1L + 3 coszﬁ)/w6. (B-18)

q(8,y) =

and Equation (B-16) may be written

cogd = (¢ coseo -n sineo)/w. (B-19)
Equation (B-4) becomes
wi(X,¥,2) = Q(G/W)/Cl (3-20)
where
e, = L2612 + a1 2, (3-21)

Finally Equation (B-1) becomes

3 ¢ ¢y = a(6,¥)  ¢; - q(8,8)
by = @) = xoe) f e ¥ aE,® o Fa@Ln * (8-22)
where
1
e, = (1+Lhy vl (3-23)

Notice that the lower limit is now one instead of zero. It is assumed that the
beam is plane parallel at z = Ror £ = 1, and the integral between £ = 0 and
£ = 1, therefore, vanishes.

To satisfy the Inequality (B-S),
M, < v1/q(8,¥) (B-24)

MODONNELL ANCRAFT COMPANY
120




N s o N

~e

REPORT MDC A2582
14 DECEMBER 1973

must be satisfied for all q(6,y), 0 < 8 < 7 and ¥ > 1. Because q is symmetric
about 6 = 7/2, the limits on 6 may be reduced to 0 < 8 < w/2, It is necessary to
find the upper limit of q. Suppose that the y~3 term in Equation (B-18) is non-
positive. The maximum value of the 4’-3 term is zero, the maximum value of the

¥~° term is one, and therefore q must be less than or equal to two. However,
q(n/2,1) is equal to 2 1/4. The V=3 term must, therefore, be positive when q is
at its maximum. Since all terms in Equation (B~18) are positive, ¥ must equal its
minimum value of one for q to equal its maximum. The value of 6 which maximizes q
is found by differentiating q(6,1) and setting it equal to zero.

Qj_g%,_l_)_ = }-22 cos6 8in® = Q (B-25)

The pertinent solutions are 6 = 0 and 6 = n/2. If 6 = 0, however, the w-3 term is
negative., The maximum value of q(8,y) is, therefore, given by

max[q(6,y)] = q(n/2,1) = 9/4. (B-26)

The Inequality (B-24) becomes

M, < /17a(8,¥) < TTaGi/2,D) = 3. (B-27)
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Appendix C

Derivation of the Density Change Across a Plane Oblique Shock Wave
When the Shock-Wave Angle B is Known

Reference 11 gives the following conservation equations for flow across a
plane oblique shock wave.

Mass

lulsins - pz(uzsinB - vzcoss) (c-1)
Momentum normal to shock wave

2 .2 2 .
P1 + plu1 sin“8 = P2 + pz(uzsinB - vzcosB) (c-2)

Momentum parallel to shock wave

2
P sinBcosf = oz(uzsinB - vzcosB)(uzcosB+vzsinB) (C-3)
Energy
1/2u2+-LP—1-1/2(u +v )+—Y— (c=4)
1 y=1 2

°1 P2

The symbols u, v, 0, and P represent respectively the horizontal and vertical
velocity components, density, and pressure. Subscripts 1 and 2 denote respectively
values upstream and downstream of the shock wave. Equations (C-1) through (C-4)
are a system of four equations with four unknowns, Uy, Vo, and py. The problem
here is to find p,. This task is accomplished by successivefy solving an equation
for one of the unknowns (not pj) and substituting the resulting expression into the
remaining equations. The system is thus repeatedly reduced by one equation and one
unknown until there is only one remaining equation with p2 as the unknown.

First Equation (C-1) is solved for vy
v, = tanf (u2 - u1°1/°2) (C-5)

The following Equations are obtained by substituting the expression above into
Equations (C-2) through (C-4).

P, + plulzsinze =P, + sin26 “12912/92 (C~6) r
2 2 , ;
uco8”8 = u, - sin"B u1°1/°2 -7 ;
,~) é
o
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4 P
2 2y 1 2) . 2 _ 2 -
u,” - u, + (-—— -5 ) tan B (u2 ulolfpz) (c-8)
Equation (C-~7) is solved for u,.

u, = ul(cosZB + sinzB pl/pz) (c-9)

The system is reduced to two equations and two unknowns by substituting Equation
(C-9) into Equation (C-8). Equation (C-6) is unchanged since it does not contain

u,.
2
P P P
u 2s.’mZB i S 1| = 2 (1 2 (c-10)
1 2 -1 01 p2

€2
The system now includes Equation (C-6) and (C~10). Equation (C-6) is solved for

P2.

. 2,2 P1 _
P, Pl +p,u,"sin 8 (1 q) (c-11)

Substituting Equation (C-11) into (C-10) yields
2 2,2 2 .2
Py (plul sin'8 ~ Yp'lul sin“f - 2yP1) +
(C-12)
2 2,2 3 2.2 3 2.2
02(2Y01P1 + Zyol v sin“B) - Pr Yy sin“8 - Ye, Wy sin"B = 0.
The two solutions to this quadratic equation are

pz - pl (c-13)

and

Dlulzsinze (y+1)
(C-14)

+ 0, %1% (v-1)

P, =P
2 1
ZvP1

Equation (C-13) is an extraneous solution. Since Mach number is given by

2 2, 2 “f e
M%2au?/ala S § , (c-15)
o 1 ® yPl

t Equation (C-14) may be written

ASODORRILL ANSORAFY OOMPANY
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(r+1)M_s1n28

P, = P . (C-16)
2 1 (Y-l)MgzsinZB + 2

Equation (C-16) is the desired expression for 02.

B R R
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Appendix D

Derivation of the Average OTF for Random Wavefront Aberrations

Consider the wave phase A(x,y) given by

A(x,y) = Ac(x9}') + AR(st) (p-1)

where AC is time-invariant or controlled and Ag defines a spatially-statiomary
Gaussian random process. The purpose of this appendix is to find an expressgion
for the expected value of the OTF corresponding to the wave phase A given by
Equation (D-1).

From Equation (2~28) the OTF for the A of Equation (D-1) is given by

1 -]

x - - 4 -
TGeap ™ 1 Jf G sy IG Gy 4)
x exp{ik[Ac(x‘+x,y'+y) - Ac(x’,y')]} (>-2)
x exp{ik[ap (x"4x,y"+y) ~ Ap(x7,y7)1} dx” dy”.
Taking the expected value of both sides of Equation (D-2) yields
1 or g - » ” ”» ~ - -

BleGipap ] = ¢ Jf oty G iy ) empltkacxtxy 4y) - 4,y

(p-3)
x E(exp{ik[AR(x'-O-x,y“l-y) - AR(x‘,y‘)]})dx‘ dy”.

Because Ap is gpatially stationary the expected value in the right side of Equation
(D-3) is a function of neither x” nor y° and may be extracted from the integral.

ElrGP)) = rc(rz.;%)z(exp{iktAch'+x.y‘+y) - Ancx',y‘m) (D-4)

X _¥y o 1
eSETE "

cGE Gy (x7,¥7)Gy (x"4x,y “+y)

ST

(p-5)

x exp{ik[a,(x"4x,y"+y) - A.(x",y7)]} dx” dy~

The OTF 7, 1s the OTF which would be obtained if A were completely controlled. To
simplify notation the following terms are introduced.

U= Ak(x‘.y‘) Ve AR(x‘+x.y‘+y) (D-6)

MODORNELL ANRCRAFT OOMPANY
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Equation (D~4) becomes
X YNl = X Y. 1k {V-U) . _

U and V are dependent random variables with a joint probability density function
given by

vy 1 3 1 [(u-uu)z (u-uu) (v-uv) *(v-uv)z] (D-8)
H,V) = ———————— exp{— ——5— -20
20 0\,"1-&2 20-0H 8 % Tulv v
u
where
p = [E(WV) - uu 1/o o (D-9)

and where u_, Uy, ouz, and sz are respectively the expected values of U and V and
the variances of U and V. The bivariate normal density function given by Equation
(D-8) is implied by the assumption that Ap defines a Guassian random process.

The numerator of the right side of Equation (D-9) 1s the convariance function ¢(x,y).
Since the process is spatially-stationary, ¢(x,y) is not a function of x“ or y~,

the variances of U and V are equal, and the expected values of U and V are equal.,

c“ =g =g (D-10)

p = °(X.y)/02 (D-11)
Without loss of generality it is assumed the mean wave phase is zero.

By =K, " 0 (p-12)

Substituting Equations (D-10), (D-11), and (D-12) intc Equation (D-8) yields

2 2 22
—26uvio
£(u,v) = —31 exp[- a‘; 2 " ] (D-13)
2w¢64-¢2 (07=0%)

The expected value in the right side of Equation (D-7) may now be expressed

as

E[eik(v-u)] = EX = j].eik(v—u)f(u,v) du dv (D-14)
or

P 2.2 2.2 4 .2 .
Ex = —1 ffexp[- 0 u’=20uvto ‘v 421k (0”~0 )(v-u)] dudv., @15 )
I 2(c%-0%)
AMCDORNIELL ANRORAFT COMPANY
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' The term [¢v + ik(a4 - 02)]2/02 is added and subtracted from the numerator to
yield

EX =

1 ]j'exp 2_ ozuz-zwwm(cx“-cpz)1u+L¢v+1gc"-¢2)12Lo_2$ a

PN 2 (%62

(D-16)

3 02v2+21k 04-¢2)v-[¢v+i§(04-¢2112/021
X exp(- dv
2(0*-42)

Notice that the numerator in the inner integral 1s a perfect square. With the
variable substitution

" au-;w-:ikzgo"-oz)][o (0-17)
2(0 =%7)
Equation (D-16) becomes
1 ¢ oW |
EX ./i;g :L e dw

(D-18)

% f ozvz-LZka(ca-Qz)v-[ov+1.k(c"-¢2)]2/02 |
expi- % 2 dv. .
- 2(c -97) ;
The value of the first integral is /n and the exponential term in the second integral
may be simplified.

® 2 2 2 2, 4 2 2
EX = e [ TV AUKOTOVI/2,, k(07287 20 (p-19)
With the variable substitution
2

. Z= vHik(o"=0) (D-20)
t V20
: Equation (D-19) becomes ;
: ® 2 2,2 ,.2.2 4 2 "
EX = —/-_1— J e az expp- KL= M (0 =0, (D-21) S
: T S 20 . t
i o
& or 3
P o
i € 2.
H EX = exp[-k“(c"=¢)]. (D-22)
E; AMODOARELL AIRORAFT OOMPANY
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Finally Equations (D-22) and (D-14) are substituted into Equation (D-7).

ElrE5D] = 16550 expi-kP(o?-0(x, )1} (@-23)

Equation (D-23) is the desired expression for the expected value of the OTF.

“y

MODOMMELL ANNORAF T COMPANY
128

v
o e e, 3 o

P

B " ot i - - -

</

e e e R LR

+

< e e g -




REPORT MDC A2582
14 DECEMBER 1973

. Appendix E
Derivation of Equation for ﬁ
The covariar~e function and variance of the spatially-stationary wave phase 4
are given respectively by
P(x%,y) = A(x",y)A(x"+x,y +y) (E-1)
and
o2 = 8(0,0) = a2(x",y). (E-2)
The average phase is defined to be zero, and it is assumed that refractive index
changes in the optical path are small.
A(x",y") = 0 (E-3)
a(x”,y",z") = n = u(x’,y",z") << 1 (E-4)
The above conditions imply that 4 is given by
L
A(x",y°) = fu(x‘,y‘,z') dz”. (E-5)
0
In this appendix expressions are derived for ¢(x,y) and o2, It is assumed that
the refractive index variation u has a Gaussian covariance function.
' 3 2, 2,2
u(x,y7, 2 ) u(x"+x,y +y,z°+2) = u" exp|-{—=35 + J—z 12 (E-6)
L a, a,
From Equations (E-1) and (E-5) the covariance function ¢ is given by
L L
¥(x,y) = fu(x'.y‘,z‘)dz‘f 1.1(::"0-):,y"|"y,zz)t‘lz2 (E-7)
0 0
or
LL
T o(x,y) = ff u(x‘,y',z‘)u(x‘+x,y’+y.zz)dzzdz’. (E-8)
00

!
v
.

With the variable substitution

PR

z=z,- z° (E-9) ¢
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Equation (E-8) becomes
L L-z°
¢ (x,y) -f f WX,y ,z U (X +x,y +y,z +z) dz dz”. (E-10)
0 -2z°

Substituting Equation (E-6) into Equation (E-10) yields

L L-2°
o(x,y) = u2 exp[( )]J f exp(-z /a ) dz dz* (E-11)

or
— 2 2
*(x,y) = 1a 2 exp|-{E7 + L5 (E-12)
x ¥
where 1 is defined by
L L-z" )
1=t f [ em-2/a?) dz ax". (E-13)
a0 -2~ z

With the normalized variables
us= z/t:lz ve 2 /az W= L/az (E-14)
Equation (E-13) becomes

w w=-v
1 f f du dv. (E-15)

To evaluate I, Equation (E-15) is expressed in terms of the error function, erf,
and the error function complement, erfc. These functions are given by

v

2 -
erf(v) = ',—2*. fe-u du 'ﬁ%’ fe uzdu (E-16)
0 -
o« u 2 -7 2
erfc(v) = 1 - erf(v) = = 2 [ au- & j e (E-17)
v 0
erf(0) = 1 - erfe(») = 0 (E-18)
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-

A erf(») = erfe(0) = 1 (E-19)

The inner integral in Equation (E-15) may be written

- 4] o o -

}:-uzdu = fe-uzdu +fe-u2du - fe-uzdu - fe-uzdu

-v R ad 0 w-v -

(E-20)

- —2',1_ [2 -~ erfc (w-v) - erf(v)]

Substituting Equation (E-20) into (E-15) yields

- W W
I= Tﬂ 2v-6ferfc(w-v) dv —‘!erfc(v) dv

(E-21)

w v
- /7 [w- ferfc(v) dv].

0
The error function complement has the property26 i

z (-] ' -]
ferfc(v)dv - "L;J’(v-w)e-vzdv. (E-22)

w

Equation (E-21) becomes

2 ® 2
1= /- zfve"’ dv = 2f(v-u)e"’ dv
0 w
/-l e¥ - /mfeV av (E-23)

-ﬁwerf(w)—l-ﬁeq.

Substituting Equations (E-14) and (E-23) into Equation (E-12) yields the general
expression for ¢.

2 2

2 — 2 2
*(x,y) = [/17 (L/aerf(L/a) - 1+ o (L/82) ]azzuzexp [—(L- + 1—)] (E-24)
& 8
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If a, << L, then Equation (E-24) becomes

——— 2 2 .

o(x,y) = /ra, L u? exp [—(—3—2- + -13)] (E-25)
a a
x %

Finally, if u is isotropic, then the a's are all equal,

a = ay =a, =a, (E-26)

and the covariance function and variance of A are given respectively by

e(x,y) = /mal ul exp[-(x2 + yz)/azl (E-27)
and
02 - /T al uz. (E-28)

§ mr—————
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{ Appendix F

Derivation g§,§:for the Stine-Winovich Experiment

The purpose of this appendix is to find the average theoretical ratio 6
of the radiant power emerging from the collection aperture to that emerging from
the source aperture for the Stine-Winovich experiment.

From the problem geometry and the assumption of an isostropic boundary layer
disturbance both the radiant emittance of the source aperture 0(r) and the image
irradiance I(R) are rotationally symmetric. The ratio Q is therefore given by

Ih
2r] TI@® R dr
Q= 0 . (F-1)
Ta
27 f 0(r) r dr
0

It 1s assumed that 0(r) is constant over the source aperture, and for simplicity
the total radiant power through the source aperture is taken to be unity. O(r)
and Q are, therefore, given respectively by 1

. 1 O0<r ir, .
{ 2’ ;
O(r) = Ta (F-2) ;
0 otherwise :
|
and
Q= zwdf T(R) R dR. (F-3)

In the spatial-frequency domain I(R) and O(r) are related by
{ . Si(v) - So(v)r(v) (F-4)

where S; and S, are the Fourier transforms of I and O respectively and t is the
system OTF. Since the system is rotationally symmetric, Si. S , and T are all real.
The Pourier transform pairs I, si, and 0, S, have the following relationships.

=™

I(R) = 27 b[ 54 (»)3(2mvR) v dv (F-5)

T

!
|
|
¢ |
1
|
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So(v) - 21rf O(r)Jo(Zwr) r dr
0 . (F-6)
T
a

- 2—-
N 3 J Jo(var) r dr

The following equation is obtained by substituting Equations (F-4), (F-5), and
(F-6) into Equation (F-3).

2 b

i85 f
r 0

r

f J0(21rvr) r dr -'r-(v)Jo(Zva) v dv R dR (F-7)
0

a

Oo_.a

By changing the order of 1ntegration, Equation (F-7) may be written

La

2 3
Q= 3—“5 ff 3, (2muR) R dnf Jo(2mvr) T dr T(V) v dv (F-8)
r, 00
Bessel functions have the property27
i g a0 = 3y, (F-9)

In integral form Equation (F-9) may be written

4
6[ rdg(r)dr = xJ; (x). (F-10)

With the formula above, Equation (F-8) becomes
Q= —f W) 3y (2ﬂvr ) J (21rvr ) dv. (F-11)

The upper limit of the integral may be changed to D/Af sincee
(V) = r( ) = 0, r>D (F-12)

where D is the telescope diameter.
With the variable substitution

u= varb (F-13)
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Y Equation (F-11) becomes

21Dr,
b
- A — u 2J1(u r—b)
Q= 1(2“ )Jl(u)_.____. du. (F-14)
b T
u_a
b

The average OTF T is now examined. In terms of its random and diffraction-limit
components 1 is given by <

- T
‘(Tf') Rz(rfbro( ) (F-15)

vhere a "2" is included in the subscript of Ty to indicate that two TBL's are
crossed by the optical beams. It is assumed that the two TBL's are independent
but statistically identical. The random optical phase for a beam crossing both
TBL's is given by

ARz = ARa + ARb (F-16)

where Ag, and AR} are the random phases caused by the first and second TBL's respec- :
tively. Since Ap, and ARp are independent Gaussian random variables, the variance !
of AR2 1s equal to the sum _of the variances of AR, and App. If the variances of
ARa and ARp are equal to 0“, then the variance of AR2 is given by

2 2 2 2

g, =0 + 0" =2 (F-17)
The equation for ;kz is therefore
- _ 2
T &) = a2l (1~ /0 o 7 En1? (F-18)

where ?k is the random OTF for a beam crossing only one TBL. Substituting Equation
(F-15) and (F-18) ianto Equation (F-14) leads to the final expression for Q.

2wDr

b T
Y3 23, (u —‘) ~
6 - 6’ O(Tr—)ITR 21rr —4] J (u)—————b—- du (F-19) '
.J! ,
u T

3

.

|
e
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Appendix G

Derivation of the Radisnt Output Power of a Shearing Interferometer
as a Function of the MIF

Figure 58 shows the superimposed beams for a shearing interferometer. It is
assumed that the beams are monochromatic and perfectly coherent. The beam I is
displaced from the beam I; by (x,y), and the relative phase of the two beams is A
In general A is a function of either (x,y) or time t or both depending on the inter-
ferometer design.

The pupil functions for { and i are given respectively by

AeikA(x’,y‘)

, (x",y7)el
‘0 otherwise : (6-1)

6(x",y) =
and

1k{A(x" + x, ¥7 + y¥) + A}

otherwise.

Ae

“v’) = , (x°,y7)el (G-2)

Since the condition (x°,y”)el, implies the conditiomn (x” + x,¥~ + y)eLl, the pupil
function G; may be written

Gl(x‘,y‘) = G(x" +x, y' + y)‘ikl\ . (G-3)
The pupil function for the interferometer output G, is the sum of G and G,
G,y (x",y7) = G(x“,y°) + G, (x%,y7) (G-4)
or
-~ Cd - » - ” ikA
Gz(x 7)) = G(x7,y°) + G(x* + x,y° + y)e . (G-5)
The radiant power density of the interferometer output is
*®
I(x",y7) = 6, (x",5°)6,(x",y") (6-6)
From Equation (G-5) Equation (G-6) becomes
L4 » * 4 rd 4 - * - - - -
I(x",y") = G (x",y")G(x",¥7) + G (x"+x,y +y)G(x"+x,y "+y)

(G-7)
+ G*(x‘ WY )G(X"+x,y +y) eikAi- G*(x‘+x,y‘+y)G(x‘ ,y‘)e-ikA.
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21;- X Yy

X =t

FIGURE 58
CROSS SECTION OF SUPERIMPOSED BEAMS FOR A SHEARING INTERFEROMETER ‘ /
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The total radiant output power is found by integrating I(x°,y”) over all space.
<«
pow = ﬂl(x‘,y‘) dx“dy” (G-8)
-l
Upon substitution of Equations (G-1) and (G-7) Equation (G-8) becomes

pow = 2LA%A + 2!(4:5[63“‘A ![G*(x‘,y‘)G(x’+x,y‘+y)dx‘dy‘] (G-9)

where Re denotes "the real part of.”" Equations (2-24) and (2-27) imply that
Equation (G-9) may be written

- x v, ikA
pow ZZA*Agl + Refe(E,Dre ]%. (6-10)
Denoting the phase of T by Q(x,y),
X Yy w0 | X Ly l8(xy)
Geap) " TGpRple (6-11)
Equation (G-10) becomes
pow = 25a%AfL + |1 G5 | cos((x,y)+en1}. (G~12)

In a real system finite bandwidth, inequality of power of the two beams, and
partial incoherence of the beams prevent Equation (G-12) from being realized. It
can be shown, however, that even with the error sources mentioned above, pow is
still directly proportional to the amplitude of the cosine term. Equation (G~12)
is modified to

pow = a + Blr(%,-ff-)lcoswi-rﬂ(x,y) + kAl (G-13)

where a and 8 are constants (B<a), and ¢; is the phase change caused * ' partial
incoherence.

For the corner-cube design the phase term kA is directly proportional to time.
With the x-axis as the direction of shear, Equation (G-13) becomes

pow = a + slr(T"f-,O)lcosw(x) + wtl (G-14)

where
$(x) = o, + 2(x,0) (6-15)
and wp is the angular frequency of the relative phase of the two beams.
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